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• An asteroid has an irregular shape and 
composition, and as it rotates, it reflects 
different amounts of light.
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• A sufficiently far away object in relative 
motion is imaged with camera as a point of 
light with time-varying brightness.

Long-exposure image

The Asteroid Geographos

Time/angle

Brightness

The “lightcurve”
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• In the simplest approximation, the total 
brightness is proportional to the area of 
the shadow.

• We can measure the total amount of light 
reflected from a (matte) surface at a 
particular position.
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• Inverse Problem: Reconstruct (a convex 
approximation) to the shape from noisy 
measurements of brightness

• Required Steps:
• Construct surface area measure from bK

• Construct K from its surface area measure

Surface area measure or
EGI=extended Gaussian image
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• For a convex polytope P with N facets:
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• Data is so weak, we should expect non-uniqueness!
• Take a non-origin-symmetric convex body K with 

brightness
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• Aleksandrov’s projection theorem:
– For origin-symmetric convex bodies K and L

         )()( LKuubub LK =�∀=

• Aleksandrov’s uniqueness theorem:
– For any convex bodies K and L
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• Plan of Action: 
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Use polytopes
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• Constraints
– Minkowski’s existence theorem:

A measure m is the surface area measure of 
some nondegenerate convex body (or polytope) 
iff it is not concentrated on a great sphere and
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– Positivity:

– Symmetry:
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=• Use MATLAB’s optimization toolbox: 
fmincon function uses SQP 
(Sequential Quadratic Programming)

)(~),...,(~    and  1 MKK ububN• Algorithm 1: Input:

• Output: surface area measure of a 
polytope P with at most N facets
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• Assume the number N of facets is not fixed.
• Given M viewing direction vectors uk, compute the normal 

vectors vj corresponding to the unique convex polytope of 
maximal volume with the same brightness values. (In 3-D, at 
most M(M-1) such vj’s.)

* S. Campi, A. Colesanti, and P. Gronchi, Convex bodies with extremal volumes 
having prescribed brightness in finitely many directions, Geom. Dedicata 57
(1995), 121-133.



9/3/03 12

{  0   such that   ,)(~ minargˆ
2

≥−= aaVCba K
a

• Algorithm 2:  Find the linear least-squares solution

• Input: )(~),...,(~ 1 MKK ubub

[ ]T
NvvV 2/1,...,=• Calculate the nodes:

• Algorithm 2’ (Kiderlen): Find the LP solution
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• Equivalent to shape from curvature

• Trivial for Polygons
TT
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• Nontrivial for Polyhedra
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* J. Lemordant, P.D. Tao, and H. Zouaki, Modélisation et optimisation numérique 
pour la reconstruction d’un polyèdre à partir de son image gaussienne 
généralisée, RAIRO Modél. Math. Anal. Numér. 27 (1993), 349-374.

• Use MATLAB’s fmincon function to solve optimization 
problem (convex objective function, linear constraints)

• Use free C++ program Vinci to compute V(P(h))

• Use free program qhull to convert H-representation of 
optimal P(h) to its V-representation and to compute the 
convex hull

• qhull outputs a Mathematica graphics object for display

• Thanks to ex-WWU student Chris Street
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Th. 1

. as metric Hausdorff in the   toconverges
Then   polytope.convex output an  be let 

 there,stated asinput  with 2'or  2 Algorithmeither For 
.in  dense isunion   whosersunit vecto lnonparalle

mutually of sequence a be 21Let   .in body 
convex symmetric-originan  be let  and 2Let  

1

∞→
≥

=
≥

 MK
Pn, MP

S
,...,, kuR

Kn

MM

n-
k

n

Th. 2 Similar result holds for Algorithm 1.
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Proposition
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• Recall that .   )()( uubuh KK ∀=Π

* S. Campi, Recovering a centred convex body from the areas of its shadows: a 
stability estimate, Ann. Mat. Pura Appl. (4) 151 (1988), 289-302.

* J. Bourgain and J. Lindenstrauss, Projection bodies, in: Geometric Aspects of 
Functional Analysis (1986/7), Lecture Notes in Math. 1317 , Springer, Berlin, 
1988, pp. 250-270.
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Lemma
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Proof uses: projection bodies, Cauchy’s surface area formula, the isoperimetric
inequality, mixed volumes.
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Th. 3

 function. brightness
its only via accessible is that in  body convex 
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nRK

Proof uses: Kiderlen’s LP Algorithm 2’,  a refined estimate for the constant in the 
Campi-Bourgain-Lindenstrauss theorem, and a polynomial-time algorithm for 
constructing an approximation to a rational convex polytope from its surface 
area measure due to

* P. Gritzmann and A. Hufnagel, On the algorithmic complexity of Minkowski’s 
reconstruction problem, J. London Math. Soc. (2) 59 (1999), 1081-1100.
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• Use of clustering or decimation in alternative 
approach to Algorithm 1.

• Systematic study of the effect of noise. To 
include a proof of convergence and estimates 
of rates of convergence with noise using 
empirical process theory.  Joint works with 
Amyn Poonawala and with Markus Kiderlen.

• Develop reconstruction algorithms using 
different types of data.


