Let M be a (smooth) compact Riemannian
surface. Then the Gauss-Bonnet Theorem
says

_[ K
1) = | Kavol,

where K denotes the Gauss curvature.

Key point: The left hand side is a topological
invariant, while the right hand side is the
integral of a function built from infinitessimal
information.



Now let M be a triangulated surface. Then
M) =V-E+T
(= #vertices — #edges + #triangles).

We use the relations

and
E= 2 deg()
to write v
xM) = V= 5 E
= 31— & deg(®).

This is already a wonderful formula,
expressing a topological invariant in terms of
local information.



We can also write

x(M) = Z ‘2‘1'7[—(2717 - -2672 deg(v)).

Comparing with Gauss-Bonnet, we can guess
that maybe 27 — 2= deg(v) is some sort of

combinatorial Gauss curvature at the vertex
V.



Notes: Suppose we build a geometric model
for M by declaring that each triangle of M is a
flat equilateral triangle (with edge-lengths 1).
Then «-—265 deg(v) is the total angular measure

around the vertex v. On the other hand, 2r is
the angle around a point in a flat space.
Therefore, we can interpret 2r — 26’—‘- deg(v) to

be the "angle defect" around the point v in
this geometric model of M.

Moreover, this geometric model of M is flat
everywhere except at the vertices. In
addition, one can easily make precise sense
of the statement: the amount of Gauss
curvature contained at the vertex is v is

27 — 2= deg(v). In other words, suitably

interpreted, the combinatorial formula "is" the
geometric Gauss-Bonnet formula applied to
the piecewise Euclidean space resulting from
declaring each simplex to be equilateral.



Following the "lessons" learned from the
simple example, our philosphy is:

1) To define a combinatcrial version of some
aspect of curvature, find a relationship
between the curvature and something (such
as the Euler Characteristic) that is
well-defined for combinatorial spaces. This
relationship should continue to hold for the
combinatorial curvature. In fact, the
relationship can help us find the formula for
the combinatorial curvature. |

2) One can view the combinatorial curvature
from a geometric point of view by considering
the corresponding piecewise Euclidean
space. The curvature can often be expressed
directly in terms of the dihedral angles of this
complex.



Once we start talking about piecewise
Euclidean spaces, there is no need to stick to
equilateral triangles. Given a triangulated
surface with a positive length assigned to
each edge, if the lengths satisfy the obvious
(strict) triangle inequalities, then there is a
unique corresponding piecewise Euclidean
space with the property that each triangle is a
Euclidean triangle, and each edge has the
corresponding length.

For such a space we have the formula

x(M) = Z —2—17—[—(27r — (total angle at v))



Some relationships between curvature and
"other notions":

1) Tube formula/ kinematic formulas

2) Bochner-Weitzenbock formula

3) Functions of curvature that integrate to
give topological invariants.



1 Tube Formula/Kinematic Formulas
Weyl's tube formula [Hotelling]

Let M be a smooth compact m —dimensional
submanifold of n —dimensional Euclidean
space E. Let M(e) denote the

¢ —neighborhood

(or "tube") around M in E. Then for small €,

Vol(M(€)) = € ZC €', | R dvol
where the a, ., are universal constants, and
the R’ are functions on M, 0 for i odd, called
the Lipschitz-Killing curvatures. R® = 1, R*is
the scalar curvature, and, if m is even, R™ is
the Chern-Gauss-Bonnet integrand - whose
integral is the Euler characteristic. (The study
of this formula and its implications eventually
lead to the general

Hopf-Allendoerfer-Fenchel-Weil-Chern-
Gauss-Bonnet Theorem.)



One amazing aspect of this formula is that all
coefficients in this expansion are integrals
over M of polynomials in the curvature (called
the Lipschitz-Killing curvatures). In particular,
the integrands depend only on the intrinsic
metric of M not on its embedding. And the
highest order term in the expansion is a
topological invariant.

What do we mean by "polynomials in the
curvature"? Expressed in local orthonormal
coordinates, we can think of the curvature at
a point as a skew-symmetric matrix R of
2-forms. Thatis,

R()(,Y) = VXVY-*V)IVX-—-—V[X’Y] = Ei’ld(TM)

All of the curvature m — forms we consider will
be polynomials in the entries of this matrix
and the standard basis 1-forms.



(A very special case of) Chern’s kinematic
formula [Steiner, Blaschke, Santalo, Federer]

Let Gy, denote the Grassmannian of «Hine
k —planes in R". Then, with all restrictions on
M as above

j M0 FY) dEF = B, j R

Gy
fori=k+m—-n >0, and 0 otherwise.

(Note that the case k = n is the general
H-A-F-W-C-G-B Theorem.)



Here is 2 way to define combinatorial
Lipschitz-Killing curvatures. Given a
triangulated manifold M, consider the
corresponding piecewise Euclidean manifold,
embed it isometrically in some Euclidean
space, and investigate the tube and/or
kinematic formulas.

This has been done (Wintgen,
Cheeger-Muller-Schrader. [Kuiper,Banchoff]).

Theorem(W, C-M-S): Let M be a PL manifold
embedded in some Euclidean space. One
can define a curvature ri for each @ — simplex o
of M, depending only on the local intrinsic
structure of the star of a,so that if one
replaces

jMRi by D" e (@) Vol(a) then the el
kinematic formulas remairgtrue.

There s abe o fabe Lo rosis o
™ M.p‘ %{ ii@(w-rl?“ ’ﬁﬂ %@ %7‘\1‘(
must be wmediliod S/o’ﬂf//«



Example; Scalar Curvature (Regge)

Let M be a triangulated m —manifold with an
allowable set of edge lengths. For each

(m — 2)-dimensional simplex a, define the
scalar curvature at a,S(a) to be the angle
defect

1 — (total angular measure at )

where we have normalized things so that all
unit spheres have volume 1.



Regge was interested in studying Einstein’s
functional

J- y S dvol,

and its critical points, thought of as a function
on the space of metrics of fixed volume
(called Einstein metrics).

In the PL case, | S dvol is replaced by
Z S(a)Vol(a).

o (m—2)

The critical points of this functional (as a
function on the space of allowable edge
lengths) have been studied for some
triangulations of §4, CP?,5? x §?, s?
(Hartle,Hartle-Sorkin-Williams,
Piran-Stromlinger)



Just to indicate the flavor of the other
combinatorial Lipschitz-Killing curvatures (as
defined by C-M-S) suppose m = dim(M) is
even, then the Gauss-Bonnet integrand »™ is
given by |

) = 2 1Y@, a2t [, a2,

where the sum over all ascending chains

v < a2 < aq? << ¥t < a?

of even dimensional simplices, and [a, ]
denotes the angular measure of of the
simplex  as seen from a.

In particular

(M) =D ().



The continuum limit:

Let M be a compact Riemannian m —manifold
with a smooth triangulation. Then, if the
triangulation is sufficiently fat (fatness=
volume of m —simplex/(length of longest
side)™ one can replace M with a PL manifold
with the same combinatorial structure and
edge lengths.

Theorem(C-M-S): Take a sequence of
smooth triangulations of M whose mesh goes
to 0, and whose fatness is sufficiently
bounded below by a positive constant. Then

(The total combinatorial scalar curvature of
the corresponding PL manifolds, as given by
Regge’s definition)

converges to
(The total scalar curvature of M).

Note that this is not a statement about
pointwise convergence!

Corresponding statements are true about the
other Lipschitz-Killing curvature integrals.



One can also make a combinatorial analysis
of extrinsic Lipschitz-Killing curvatures (e.g.
mean curvature), and this was done by
Steiner, and generalized by
Cheeger-Muller-Schrader.



Bochner-—Weitzénbock Formula

Let M be a smooth compact manifold. Then
one has the deRham complex of differential
forms

0084023
where Q)? denotes the space of smooth
p —forms on M. Then one can compute the
real cohomology of M by
Ker d,
Imd,;
Now suppose that M is endowed with a
Riemannian metric. Then each space of

forms inherits an L, inner product. One then
defines the adjoint boundary operator

dy o QF — Q!

H?(M,R) =

by
(dp-10,B) = (a,d; B)

for all (p — 1)-forms « and all p —forms .



One then constructs the LLaplace operator
Ly = dydp +dpady - QP > QP

The main theorem of Hodge theory is

Theorem(Hodge, Kodaira):

Ker L1, = HP(M,R).

Weitzenbock proved that one can write
Ly = ViV + ),

where V,, is the Levi-Civita connection, and
F, is a 0"-order operator built from the
curvature. These curvature operators are
somewhat mysterious with the exception of

Fo=F, =0, F{=F,1 = Ricci Curvature.




Bochner discovered this formula (later but)
independently, and observed that one can
immediately deduce

Theorem (Bochner) (1)Let M be a compact
Riemannian manifold. If F, is a positive
operator at every point of M then

HP(M,R) = 0.

(2) Let M be a compact connected
Riemannian manifold. If 7, is a nonnegative
operator at every point of M,and is positive at
some point of M, then H?(M,R) = 0.

(3) Let M be a compact connected
Riemannian manifold. If F, is a nonnegative
operator at every point of M, then
dimHP(M,R) < (). |



Let us try to find combinatorial analogues of
the curvature operators F, by mimicing this
procedure. Let M be a simplicial complex,

with cochain complex

d ) d
0->C'3ct3 3.,

where C? denotes the space of real
p —cochains on M. Then one can compute the

real homology of M by
Ker d,
Im d, .

Now suppose that each C” is endowed with
an inner product. Then one can define the
adjoint boundary operator

ds . CP - CP!

HP(M,R) =

by
(dp1a, B) = (@,d; )

for all (p — 1)-cochains a and all p —cochains

B.



One can then construct the Laplace operator
L, = djdy +dpady, : CP - CP.

It follows from simple linear algebra that

Theorem (Hodge, Eckmann):

Ker L1, = HP(M,R).

The next step is to find some sort of
combinatorial analogue of the
Bochner-Weitzenbock formula. At its
essence, we would like a formula of the sort

L, =L, + Fp,

where L, is a nonnegative operator, and F, is
a locally defined operator, that is an operator
whose action on a dual-simplex o* is
completely determined by the combinatorial
structure of some local neighborhood of o.

From such a decomposition, one can
immediately deduce

Theorem: Let M be a finite simplicial
complex. If F, is a positive operator, then
HP(M,R) = 0.



We now consider a second possibilty.
Consider the following decomposition of a
general symmetric 3 x 3 matrix

/abc\

A= b d e =
\ c e f )
bl b e )
b lblle e |+
c e |cl+e] /
[ a—ib-le| 0O 0
0  d—lblle 0
\ 0 0 f—lcl-lel
— L(A) + F(A).

It follows from classical theorems in matrix
theory that L(4) is a nonnegative operator.

We apply this decomposition to the
combinatorial Laplace operator to define two

new operators by
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