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Large inputs in 3D

Surface reconstruction 
and medial axis 
construction inputs: 
20,000 - 20,000,000 
samples



Mesh generation
Needed for finite 
element simulations; 
very large inputs 
representing region 
boundary. 

3D particularly 
important. 

Shewchuk (98?)



3D Delaunay O(n2) …
n/2 points on each 
of two skew lines.

Points on moment 
curve, etc. 

All examples 
distributed on 1D 
curve?



… but linear in practice.

Adding samples from surfaces in random 
order, #tetrahedra grows linearly. 

A & Choi, 01



Linear special cases
Dwyer 91 - Uniform random in ball (any 
constant dimension)
Golin & Na 00 - Uniform random on 
surface of convex polyhedron
Attali & Boissonnat 02 - Nicely sampled 
polyhedral surface 
Golin & Na 02 - Uniform random on 
polyhedral surface, O(n log4n)  (almost 
linear!)



Nicely sampled polygonal

Fixed set of 
polygons in R3, 
only intersect at 
boundaries.

Area, boundary 
length, number of 
polygons constant.



Sampling model
Every point has at 
least one and at 
most k samples 
within distance εεεε. 
Consider behavior 
as εεεε->0. 

n = O(1/εεεε2)



Attali & Boissonnat 03

Complexity of 
Delaunay 
triangulation is 
O(n).



Other sampling models

Every sample has a nearest sample at 
distance at most εεεε and at least εεεε/2. 

Every point has sample within distance 
εεεε −− not appropriate!



Easy modulo edge effects …

x’ is reflection 
of x across 
planar bisector. 
Voronoi balls 
nearly tangent 
to face at x are 
close to x’.

x

x’



Modulo edge effects …
Any ball 
touching a 
point far from 
x’ on the 
opposite plane 
contains too 
much area to 
be empty. 

x

x’



Modulo edge effects …

x’

All Delaunay
edges from x into 
interior of 
another polygon 
have to end 
within O(εεεε) ball 
around x’, so only 
O(1) such.



Singular region

Singular region of 
width O(ε)(ε)(ε)(ε)
surrounding 
edges. 



Singular to singular

Only O(sqrt n) samples total in all 
singular regions so O(n) singular-to-
singular Delaunay edges.



Singular to non-singular
O(n3/2) is easy; to get O(n), consider 
singular points above each polygon 
(below polygon similar).



Singular to non-singular

Assign point p on plane to first singular 
point hit by growing tanget ball.



Singular to non-singular

Assign point p on plane to first singular 
point hit by growing tanget ball.





Singular to non-singular
Decomposition of 
polygon with circular 
arcs. Region 
(possibly 
disconnected) for 
each singular sample 
s above polygon. 



Singular to non-singular
Delaunay balls are 
nearly tangent to 
polygon. Samples on 
polygon with 
Delaunay edge to s 
lie within 2εεεε of 
region of s. 



One region
Amount by which 
size of region is 
expanded is O(ε λ), ε λ), ε λ), ε λ), 
where λ λ λ λ is boundary 
length. 



Singular to non-singular

Total extra area 
over all regions = 
O(sqrt(n) εεεε) = O(1), 
so number of 
additional Delaunay
edges = 

O(1/εεεε2) = O(n).



Lower bounds

Jeff Erickson (by Howard Sun)



Lower bounds

Given n, ε ε ε ε , can 
construct a suface 
and an εεεε−−−−sample with 
O(n2εεεε2) triangulation. 

O(εn) balls



Lower bounds
Helix with sqrt(n) turns, 
sqrt(n) samples per turn.

Fact (Erickson, Bochis & 
Santos): ball tangent to 
cylinder at 2 samples in 
same turn contains no 
other samples -> O(n3/2) 
Delaunay edges. 



Generic surfaces?
Attali, Boissonnat & Lieuter, SoCG 03
“Generic” smooth surface S: singular 
points (with osculating maximal 
tangent balls) form a 1D set with 
fixed length L.
At least one sample, at most k, in ball 
of radius εεεε, εεεε->0.
O(n log n)  - best possible?



Higher dimensions?

Conjecture: Nice distribution of 
samples from surface of co-dimension 
c has Delaunay triangulation of 
complexity O(n (c/2) +1).



Special case of convex hull
Dimension 3 (or low)
n = 20,000 - 20,000,000
Theoretically optimal O(n lg n + t)
t = O(n)

Contrast with arbitrary-dimension 
possibly non-simplicial convex 
hull/halfspace intersection codes like
lrs, porta, cdd.



Randomized incremental 
algorithm

Add points one by one in random order, 
update triangulation with flips. Simple,  
optimal (worst-case expected time).



Implementations
delcx - Edelsbrunner, Muecke, Facello 
92,96

hull - Clarkson 96

CGAL Delaunay hierarchy - Devillers,
Teillaud, Pion 01

pyramid - Shewchuk, unreleased



Not generally output sensitive

Avis, Bremner & Seidel, 91

“Dwarfed” polytopes, t = 
O(n) but intermediate 
polytopes in construction 
have ti = O(n2). 



… but close in our case.

Golin & Na 02 - Uniform random on 
polyhedral surface, O(n log4n) 

For large enough n, apply to large 
enough random subsets.



Degeneracy

All degeneracies are “accidental” -
triangulated output is fine. 

Simulation Of Simplicity, 
Edelsbrunner & Muecke, 90. Treat 
samples as if small non-degenerate 
perturbation was applied.



Robustness
Primitive insphere
operation: is 5th 
sample in sphere 
through given 4? 

Numerically unstable! Incorrect answers 
can cause topologically impossible output 
or crash!



Robustness
Exact computation more popular than 
algorithm re-design. 

For efficiency, compute only to accuracy 
required to determine answer.

CGAL - many choices of filtering/exact 
arithmetic combos

pyramid - adaptive floating point



Point location strategies
Theoretical bottleneck. 

O(log n) per location possible with 
search data structure, but is it 
worth the effort in practice?

CGAL, hull - data structures

delcx, pyramid - no data structures



Memory usage

Performs great…until !



Thrashing

diskmemory

processor

fast

slow



Thrashing



Thrashing



Idea
Partially randomized insertion order

• increase locality of reference, 
especially as data structure gets 
large

• retain enough randomness to 
guarantee optimality 



Biased Randomized 
Insertion Order (BRIO)

(A, Choi, Rote, 03)

• Choose each point with prob = 1/2.
• Insert chosen points recursively con 

BRIO.
• Insert the remaining points in 

arbitrary order.



BRIO

log n rounds of insertion

round logn

round logn-1

round logn-2

round 0



Analysis

Randomness has two benefits:

• Bound total number of tetrahedra

• Bound time required for locating 
new points in triangulation



Analysis
Adapted from Clarkson and Shor, Mulmuley

• triggers

• stoppers



Triggers and stoppers

triggers stoppers

A tetrahedron appears during 
construction if all its triggers are 
inserted before any of its stoppers.



Analysis Sketch
ks  ps 

s
Σ

ks = number of possible tetrahedra 
with  s stoppers

ps = prob. that tetrahedron with s 
stoppers appears during construction

E[total number of 
tetrahedra] 

=

ks  ps  s 
sΣE[ running time] =



Bounding ks

ks = number of 
tetrahedra with s 
stoppers

number of subsets of 
size s seperatable by
hyperplane in 4D -
k-set problem



Bounding ps
ps <= P[the round where all triggers are chosen is  
<= the first round where any stopper is chosen]

= P [s+4 random numbers, the first 4 <= others]

= O(1/s4)

4 1 3 2 5 5 4 5 5



Bounds 

Expected 
total number 
of tetrahedra

= O(n)

Expected 
running time = O(n lg n)

In “realistic case”:



Bounds 

Expected 
total number 
of tetrahedra

= O(n2)

Expected 
running time

= O(n2)

In worst case:



Experiments - pyramid
Point location: “walk” from last inserted 
point. 

Multiple “Happy buddha”. 4096 kd-cells.

360 MHz, 128 M RAM, 4 GB Virtual 
memory 



Pyramid

10 million points on tiny machine

1/2 hour on reasonable machine



CGAL insertion strategies

Thanks to Monique Teillaud and Ian Bowman.

2.5 
hr

4M



Conclusion

Think of 3D Delaunay triangulation 
as essentially linear time, fairly 
efficient. 

Replace this hack by real out-of-
core implementation?


