Before going further, we note that it is natural,
when defining an inner product on the C? to
declare the simplices to be orthogonal. With
this stipulation, an inner product is completely
defined by the choice of a positive weight
w(a) for each simplex a. So that, for any
cochains c;and c; we set

(erea) = D wl@)ei(@)ex(a).

We now present two different combinatorial
analogues of the Bochner-Weitzenbock idea.



The first is (a very special case of) an
approach due to Garland, as expanded by
Borel. (The precise result we present is due
to Wang.) [Zuk, Pansu,Ballman- Swiatkowski,
Dymara-Januszkiewicz]

Let M be a connected finite m —dimensional
simplicial complex with the property that the
link of every vertex is connected. Assign
weights by setting

w(a®) = m(m—1)(m—2)...(m - p)

[# of m — simplices which contain o).

These weights have the nice property that for
any p —simplex a,

wia) = Y. w(B).
pr+isg

For any vertex v, the weights w induce a set
of weights w, on link(v), by setting for any
simplex S of link(v)

wy(B) = w(v x B).



Theorem: For any vertex v,let k(v) denote
the smallest positive eigenvalue of
Llo(link(v),w,),and k = inf, x(v). Let 1,
denote the smallest positive eigenvalue of
Llo(M,w). Then

Ay > 2~ “il?

Garland studied spaces with a lot of
symmetry (Tits buildings) and the restrictions
on the set of weights is unnecessary in that
setting. Moreover, he proved similar
theorems in every dimension. By estimating
the local curvatures «(v) he was able to prove
beautiful vanishing theorems for the
cohomology of p —adic Lie groups.
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If M 1s a compact triangilated n-dimensional manifold, then

x(M) = Z(wl)i#{i — dimensional simplices}.
1==0

If M is a compact Riemannian n-manifold, then
Theorem: (Allendoerfer-Fenchel-Weil-Chern-Gauss-Bonnet):

(M) = /M PF(R/2) d(vol)

where P f(R) denotes the Pffafian of the curvature operator
That is, fixing a point m € M, and X,Y € T,, M, we get a skew-symmetric map
R(X,Y):T,,M — T,,M,

by
R(X,Y)=VxVy ~VyVx — Vixy],

where V denotes the Levi-Civita connection, and, in the right hand side, X and
Y actually refer to any extension of the vectors X and Y to a neighborhood of
m.

The upshot of all of this is:
One can think of the curvature operator as a skew-symmetric matrix of 2-forms.

Pf(R) denotes the Pfaffian of this matrix.



Now let us make the combinatorial formula look more like the Riemannian
formula;

(M) = Z 1+ ;(—1)i+1 #{i' — simp;ziez's in lmk(v)}]

verticesv

Now, for any finite simplicial complex S, define

i+1 #{i — simplices in S}
i+2

n—1
E(S)=1+) (-1)
=0
So that for any triangulated manifold M

X(M)= > E(link(v)).

vertices v



The next development came from the differentiable side: Stieffel, Whitney, Pon-
tryagin, Chern, Weil.

Theorem (Chern-Weil): Write
t
det(I + %R) =1+ to1(R) + t*ca(R) + ...

For each i, 0;(R) is a 2i-form.

(i) If ¢ is odd, then o;(R) = 0.

(ii) For each k, o9k (R) is a closed 4k-form. Moreover, the cohomology class
of o9;(R) is independent of the Riemannian metric, i.e. depends just on the
underlying differentiable structure.

The cohomology class represented by oo (R) is called the k’th Pontryagin class
of M and is denoted px(M).
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Characteristic Numbers: Suppose that M is an oriented manifold of dimension
4n. Let r = rq,ro,r3.... be any sequence of nonnegative integers such

n=ry+2ro+3rs3+....

Then we can consider
P.(M) :/ P (M) Up(M)UpR U....
M

The function P, is called a Pontryagin number. More generally, any linear
combination of the P,’s is a Pontryagin number. The Pontryagin numbers are
independent of the Riemannian metric, and hence depend only on the underlying
differentiable structure.

Theorem: (Hirzebruch) The signature of M is a Pontryagin number.

That is, there exist universal constants c, so that for any oriented 4n-dimensional
manifold M, |

signature(M) = Z( ¢ P.(M).

T

Note that for any Pontryagin number P, and any oriented 4n-manifold M,
P(—M) = —-P(M).

(Whereas x(—M) = x(M).)



The Basics of Combinatorial Manifolds

1) Two simplicial complexes M and N are said to be combinatorially equivalent
if there are finite subdivisions M’ and N’ of M and N, respectively, which are
1somorphic.

2)Let X" denote the boundary of the (n + 1)-simplex. (Note that " is a
topological n-sphere.)

3) A simplicial complex is a combinatorial n-sphere if it is combinatorially equiv-
alent to X",

4) A simplicial complex M is a combinatorial n-manifold if for every vertex v of
M, link(v) is a combinatorial (n — 1)-sphere. Equivalently, if for every simplex
s, link(s) is a combinatorial n — dim(s) — 1-sphere.

Theorem(Whitehead, Cairns): (i) If M is a smooth manifold, then any
smooth triangulation on M results in a combinatorial manifold, and any two
smooth triangulations are combinatorially equivalent.

(ii) There exist combinatorial manifolds which arise from more that one smooth
manifold (i.e there exist non diffeomorphic manifolds with the same underlying
combinatorial (equiv. PL) structure,

(iii) There exist combinatorial manifolds which arise do not arise in this fashion
at all (i.e. there exist non-smoothable combinatorial manifolds).



v
Theorem(Thom, Rohlin—Svaré): Characteristic numbers can be defined for

combinatorial manifolds. That is if
P : {closed oriented differentiable n — manifolds} — R
18 a characteristic number. Then there is a naturally-defined function
P : {closed oriented combinatorial n — mani folds} — R

which is a combinatorial invariant, and such that if M is a smooth manifold,
and M is the result of smoothly triangulating M, then

~

P(M) = P(M).

In particular, the Pontryagin numbers of a smooth manifold depend only on the
underlying combinatorial (equiv. piecewise linear) structure.

[In fact, much more is true. Not only can the characteristic numbers be extended
to combinatorial manifolds, the rational Pontryagin classes can be extended to
combinatorial manifolds.|
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Let M be a compact oriented smooth manifold, and P a Pontryagin number.
We’ve seen that given any Riemannian metric on M,pP (M) is given by integrating
over M a function constructed (in a universal fash1on) from the curvature of M).
We’ve also seen that given a smooth triangulation of M, P(M) depends only on
the combinatorial structure of the triangulation.

Big Question I: Are the Pontryagin numbers of a combinatorial manifold also
locally defined?

More precisely, for any function

g : {oriented combinatorial (n — 1) — spheres} — R,

we can construct a function
Fy : {oriented combinatorial n — manifolds} — R,

by setting, for any oriented combinatorial n-manifold M,

Fo(M)= > g(link(v)).

vertices v

Any function F, arising in this way is said to be locally-defined.
For example, x(M) is locally-defined, since xy(M) = Fg(M).

Answer to Question I: 1) Yes for p; (Gabrielov-Gelfand-Losik)
2) Yes for all characteristic numbers (If'vrgt Cheeger)
' 4

we

Big Problem II: Given a Pontryagin number P, find g so that P = Fg.
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Our main result is a converse to the theorem of Levitt and Cheeger.

A tunction on the set of combinatorial n-manifolds is said to be a combinatorial
mvariant if it assigns the same value to combinatorially equivalent manifolds.
For example, each Pontryagin number is a combinatorial invariant.

Theorem: (i) A locally-defined function
Fy : {oriented combinatorial n — manifolds} — R

is a combinatorial invariant if and only if it assigned the same number to every
combinatorial n-sphere.

(ii) If Fy is a locally-defined combinatorial invariant of combinatorial n-manifolds,
then there is a ¢ € R and a Pontryagin number P such that for all combinatorial
n-manifolds M

Fy(M) = ex(M) + P(M).

In his thesis in 1973 (ugpublished essins=sebsbases) I°d Miller stated a result
which implies: If two,manifolds have the same Euler characteristic and all of
the same Pontryagin numbers, then there is no locally defined combinatorial
invariant which distinguishes them. Our proof is by different, much simpler
methods.



Main ideas of the Proof:

It F': {oriented combinatorial n — manifolds} — R is any function, then we
can write, for any oriented manifold M,

F(M) = S[F(M) + F(=M)] + 3 [F(M) ~ F(-M))

.= F,(M) + F,(M).

The main result is a consequence of the following results.

Proposition I: Let F, be a locally-defined unoriented function on the set of
combinatorial n manifolds which assigns the same number to every combinatorial
n-sphere. Then there is a ¢ € R such that for any combinatorial n-manifold M,

Fo(M) = ex(M).

[Moreover, if we write g = g, + g,, then g, = cE.]

Proposition II: Let F, be a locally-defined oriented function on the set of
combinatorial n manifolds which assigns the same number to every combinato-
rial n-sphere. Then there is a Pontryagin number P so that for any oriented

combinatorial n-manifold M, F,(M) = P(M).

[We can also say a few things about g.]

10



Proposition I: Let F|; be a locally-defined unoriented function on the set of
combinatorial n manifolds which assigns the same number to every combinatorial
n-sphere. Then there is a ¢ € R such that for any combinatorial n-manifold M,
Fo(M) = cx(M).

[Moreover, if we write g = g, + go, then g, = cE.] [ lak F-T

Write
Fg = Fg, + Fy,.

Since Fy and Fy, are unoriented, we see that F,_ is both oriented and unoriented,
and hence must be 0. Thus, without changing Fj;, we may assume that g is
unoriented.

Proposition: Suppose that g is an unoriented function on combinatorial (n—1)-
spheres such that F,; assigns the same number to every combinatorial n-sphere.

If n is odd, then F, assigns the number 0 to every combinatorial n-sphere.

“Proof”: Let y be the common value of F; applied to combinatorial n-spheres.

Consider first the case that n = 1. Applying F, to M = X! yields

y:Fg( A ) = 3g( : ).

Applying F, to M = suspension(X°) yields

y=F, (&> Y=4( 5 )

From these two equations we see that y = 0 (as does g(2°)).

11



Now consider the case that n = 2. Applving F, to M = X2 yields

y=F,( ,)==49(@ ).

Applying F, to M = suspension(X?!) yields

y=F (€)= & 3 L)

Applying F, to M = suspension?(X°) yields

y = Fg(®) = 6g( O ).

We note that in this case the equations are linearly dependent, and hence we
cannot conclude that y = 0.

For general n, we get an equation by applying F, to suspension®(X"%) 0 <
k < n. The determinant of this (n + 1) x (n + 1) system of equations is

(n— 1)!(n +1)
4

=1+ (1))

and hence, y must be 0 if n is odd.

12



Proposition: Suppose there is a ¢ € R such that F,(M) = ex(M) for every
combinatorial n-sphere. Then g = cE (and hence Fy,(M) = cx(M) for every
combinatorial n-manifold).

Proof: For any combinatorial (n — 1)-sphere N, define

S(N) = mazimal integer k such that N is a
k — fold suspension of some combinatorial (n —k — 1) — sphere.
We will then prove that g(N) = cE(/N) by downward induction on S(N).

Suppose that S(N) = n—1. Then we must have that N = suspension(®~1(x0).
If we let M = suspension(N) = suspension™(%°) then each of the 2(n + 1)
vertices of M have a link isomorphic to N. Therefore,

Fy(M) = g(link(v)) = 2(n + 1)g(N).

On the other hand
Fo(M) = cx(M) =2(n+ 1)cE(N),

which implies that
9(N) = cE(N).

13



Now suppose that S(N) = k, so that N = suspension®(N') for some combinato-
rial (n—k—1)-sphere N', and consider M = suspension(N) = suspension*+1)(N").

Then M has 2(k + 1) vertices whose links are isomorphic to N, and for every
other link N’ we have S(N') > k + 1, and hence by induction g(N') = cE(N").

Hence we have

Fo(M)=2(k+1)g(N)+ D gN)=20k+1g(N)+ Y cEN),
links N'#£N links N'#N

and :
Fy(M) = cx(M) =2(k+1)cE(N)+ > cE(N'),
links N'#N

from which we can deduce that

g(N) = cE(N).

14



Now we move on to the oriented case. Suppose that F ¢ 1s oriented, and write
Fog=F, +F,,.

Then F, is both oriented and unoriented, and hence must be 0. By the previous
proposition, if F,; assigns the value 0 to every combinatorial n-sphere, then we
must have g, = 0. This proves

Lemma: If F, is an oriented function which assigns the same value to every
combinatorial n-sphere, then g is oriented.

15



Say that two oriented combinatorial n-manifolds M, and M, are cobordant if

there is some oriented combinatorial (n + 1)-manifold W with

OW = M; U (—My).

{

i
e

Y

P

Proposition: Let F, be an oriented locally-defined function on oriented com-
binatorial n-manifolds. Suppose that F, assigns the same number (which must
be 0) to every combinatorial n-sphere. If M; and M, are cobordant then

Fg(Ml) = Fg(M2)-

Proof: Let W be a cobordism bewteen M; and M, and let W be the result of

coning off the ends of W with vertices v; and v, resp.

16
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Then every point of W is a manifold point except (possibly) v; and vy. Let

« denote the 1-cochain which assigns to each oriented edge e of W the value
a(e) = g(link(e)). Let g = d*a.

33%%(@3

Then

> Bv)=0.

vertices v of W

Now we observe that for any vertex v, if e is an edge incident to v and w is the
other endpoint of v, then (ignoring important questions of orientation)

link(e) = link(w, link(v))

so that for any vertex v

B(v) = ale) =Y g(link(e)) = > g(link(w, link(v)) = F,(link(v)).

e>v e>v vertices welink(v)

17



If v is a manifold point. then link(v) is a sphere, so by hypotheses B(v) =
Fy(link(v)) = 0. Therefore

0= > Bw= . Fy(link(v))

vertices v of W nonmanifold vertices v of W

= Fg(lmk(vl)) + Fg(lmk(v«z)) = Fg(Ml) - Fg(MQ)

which proves that
Fy(My) = Fy(My).

18



The next step is to prove
Proposition: Combinatorially equivalent combinatorial n-manifolds are cobor-
dant.

Along with the previous result, this proves

Corollary: Let F; be an oriented locally-defined function on oriented combi-
natorial n-manifolds. Suppose that F, assigns the same number (which must be
0) to every combinatorial n-manifold. Then F is a combinatorial invariant.
The proposition follows from the following theorem of Pachner:

Theorem: If M; and M> are combinatorially equivalent combinatorial mani-

folds, then it is possible to transform M, to M, by a sequence of bistellar flips.
For example: n=1

19



For general dimension 7. a bistellar flip is any operation of teh follwoing form:

Let A and B be combinatorial n-balls such that A x B is an (n + 1)-simplex,
then if M is a combinatorial n manifold with a subcomplex isomorphic to A * B
(this is a ball with boundary A % B), we may replace this ball with A x B
(another ball with boundary A x B ). To construct a cobordism between M and
the resulting space, first construct a cobordism bewteen M and itself, and then
attach an (n + 1)-simplex to the boundary of the cobordism by gluing AxBin
the boundary of the simplex onto the isomorphic subcomplex in one copy of M.

20



Now we know that if F; is a locally-defined oriented function of combinatorial
n-manifolds which assigns the same number (which must be 0) to every combi-
natorial sphere, then F} is a combinatorial invariant which is also a cobordism
invariant. To show that F; must be a Pontryagin number, we can apply the
following theorem of Thom (the original proof in the differentiable category)
and Wall (who extended it to the combinatorial category)

Theorem: Let F': {compact oriented combinatorial n—manifolds} — R
which satisfies:

(i) F(MyU M) = F(M) + F(My)

and

(ii) F' is a cobordism invariant

then there is a Pontryagin number P such that F(M) = P(M) for every combi-
natorial n-manifold M.

Note that every locally-defined function satisfies (i).

[The theorem is usually not stated in this way. Rather, it is stated as a result
about the rational cobordism group. Properties (i) and (ii) imply that F is a
homomorphism from the rational cobordism group to R].
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