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Nearest Neighbor SearchingNearest Neighbor Searching
Nearest Neighbor: Given a point set S ⊆ Rd

and q ∈ Rd, find the point p*∈ S that is 
closest to q.

NN Queries: Preprocess S so that nearest 
neighbors can be computed efficiently. 

Curse of Dimensionality: Exp growth in d.

q

p*
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ApproximationApproximation
ε-Nearest Neighbor: Given ε > 0 and q ∈ Rd, a 

point p ∈ S is an ε–nearest neighbor of q if,

where p* ∈ S is the nearest neighbor of q.

( ) ( )dist q,p 1 dist(q,p*),≤ + ε

q
p*p*

p
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Approximate NN SearchingApproximate NN Searching
Low dimensional Approaches: (n big, d=O(1)). 

Near linear space, exponential in dimension.

Clarkson ’97
Chan ’98

n(1/ε)d log nArya, et al ’98
SpaceQuery Time

( )
d 1
21/ log n
−

ε ( )
d 1
21/ nlog n
−

ε

Why         ? Any convex body in Rd can be 
ε–approximated by a polyhedron with
facets (Dudley). 
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d 1
21/
−
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d 1
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Approximate NN SearchingApproximate NN Searching
High dimensional: (n d O(1)) Polynomial size 

and polynomial dependence on dimension.
Kushilevitz, et al. ’98, Indyk, Motwani ’98 
(Har-Peled, Indyk, Motwani ’02).

n1+1/(1+ε) + dndn1/(1+ε)HIM ’02

HIM ’02

SpaceQuery Time

2
d logn

min( ,1)
⋅

ε
2O(1/ log(1 )/(1 ))n ε + +ε +ε
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Near Neighbors and Pt LocationNear Neighbors and Pt Location

Given a set S of n 
point sites in Rd.

Voronoi diagram is a 
subdivision of space 
into regions accor-
ding to which site is 
closest.

Use point location to 
answer NN queries.
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Voronoi Diagrams: DifficultiesVoronoi Diagrams: Difficulties

High Complexity: In dimension d, it may be 
as high as

Computational Issues: Geometric degener-
acies and topological consistency.

Point Location: Optimal solutions only in 2-d.
Question: Are there simpler/faster methods 

if we are willing to approximate?

( )d/2n .  Θ
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Approx Voronoi DiagramsApprox Voronoi Diagrams

ε-AVD: (Har-Peled ’01) 
Quadtree-like 
subdivision of space. 
Each cell stores a 
representative site, 
r ∈ S, such that r is 
an ε-NN of any point 
q in the cell.

ε-NN → pt location



9

Approx Voronoi DiagramsApprox Voronoi Diagrams

Har-Peled ’01: Size:

ε-NN Queries: Point location in a compressed 
quadtree in time 

( )d
n nO logn log .  

  ε ε  

nO log . 
 ε 
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Variants and ExtensionsVariants and Extensions

Arya and Malamatos ’02 explored 
variations/improvements to the AVD.

Well-separated pair construction:
Eliminated log factors, to produce an 
AVD with O(n/εd) cells.

Lower Bounds: Showed that Ω(n/εd) 
rectangular cells are needed.
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Multiple RepresentativesMultiple Representatives

Multi-representatives:
Each cell is allowed up 
to t ≥ 1 representa-
tives.

Tradeoff: cells vs. 
representatives.

NN-Query: Point loc. and 
distance comp.

t=2
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Cell/Rep TradeoffCell/Rep Tradeoff

Theorem: (AM ’02)  Given an n-element point 
set S in Rd and 2 < γ < 1/ε, there is an ε-
AVD with O(nγd) cells and O(1/(εγ)(d-1)/2)
reps per cell,  which can answer ε-NN 
queries in O(log (nγ) + 1/(εγ)(d-1)/2) time.

O(log n + 1/ε(d-1)/2)O(n)O(1/ε(d-1)/2)2

O(log (n/ε))O(n/εd)11/ε

Query TimeNo. CellsRep/Cellγ
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Basic Tools: WSPDsBasic Tools: WSPDs

r

r

>sr

A

B

A

B

Separation factor: s > 2.
Two sets A and B are 
well-separated if they 
can be enclosed in 
spheres of radius r, 
whose centers are at 
distance least sr.
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Basic Tools: WSPDsBasic Tools: WSPDs

28 pairs

9 WSPs

Well-Separated Pair 
Decomposition (WSPD): 
Given a set of n points and 
separation factor s, it is 
possible to represent all 
O(n2) pairs as O(sdn) well-
separated pairs. (Callahan, 
Kosaraju ’95)
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Basic Tools: BBD TreesBasic Tools: BBD Trees

Quadtree Box: A box 
that can be obtained 
by repeatedly splitting 
the unit hypercube 
into 2d identical boxes.
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Basic Tools: BBD TreesBasic Tools: BBD Trees

BBD Tree: Given a set of m 
quadtree boxes, we can 
build a BBD-tree of size 
O(m) and height O(log m) 
whose induced subdivision is 
a refinement of the box 
subdivision. (AMN+98)
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Separation & RepresentativesSeparation & Representatives

The greater the separation from a set 
of points, the fewer representatives 
are needed to guarantee that one is 
an ε-NN.

4 reps1 rep
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Disjoint & Concentric BallsDisjoint & Concentric Balls

Lr1 r2

Disjoint Ball Lemma: Given disjoint 
balls of radii r1 and r2 separated by 
L, the number of representatives 
needed is

Concentric Ball Lemma: Given 
concentric balls of radii r and γr, 
the number of representatives 
needed is

( )
d 1
21/
−

εγ

( )( )
d 1

2 2
1 2rr / L

−

ε

rγr
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Separation Lemma (Simplified)Separation Lemma (Simplified)

Lemma: Given γ > 2, 
there exists a subdi-
vision with O(nγd) cells.  
For each cell u of size 
s, all sites within dis-
tance γs can be en-
closed within a ball
whose γ expansion does 
not intersect u.

s

r
>γr

γs
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ConstructionConstruction

Create a WSPD with 
separation 4.

For each WSP, create 
a set of quadtree 
boxes whose sizes 
depend on the dist 
from this WSP.

Build a BBD tree for 
these boxes.
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Achieving SeparationAchieving Separation
Why does it work? 

Suppose that the 
points within the γs 
expansion are not 
contained within a 
separated ball.  Then 
there would be a 
well-separated pair 
that would force the 
cell to be split.

s

r
>γr

γs
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Selecting RepresentativesSelecting Representatives

Two-Step Approach:
• Construct a set of

1/ (εγ)(d-1)/2 points 
uniform on an 
intermediate sphere B. 

• Reps are the nearest 
neighbors of these 
points.

BB
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Preprocessing TimePreprocessing Time

Construction time is dominated by the 
time to compute approximate nearest 
neighbors of the intermediate points.

Using Chan’s algorithm, this can be done 
in time d 1

21(Total Reps) logn
−

 ⋅  ε 
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Space Efficient AVDsSpace Efficient AVDs
Total space: For γ=2, O(n/ε(d-1)/2 ) space. Can 

we eliminate the dependence on ε in the 
space?

Theorem: Given a set of n sites in Rd, 0 < ε < ½, 
we can build an ε-AVD with O(1/ε(d-1)/2) reps 
per cell consisting of O(n ε(d-1)/2) cells.

Corollary: ε-NN queries can be answered in 
O(log n + 1/ε(d-1)/2) time and O(n) space.

(was O(n))
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Space Reduction: SamplingSpace Reduction: Sampling

Recall that representatives 
come from two sources:
– From outside large ball
– From inner cluster
– No points exist in the 

remaining “no-man’s land”
Idea: Allow more points 

into no-man’s land, and 
make them all as reps.

r
>2r

4s
s
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Space Reduction: SamplingSpace Reduction: Sampling

Intuition: Use a sample S’ 
of nε(d-1)/2 points in the 
basic AVD construction.  
We expect O(1/ε(d-1)/2) 
points of S to lie in no-
man’s land.

Representatives: From 
outer, inner cluster, and 
no-man’s land.
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Space Reduction: SamplingSpace Reduction: Sampling

Deterministic Sampling: To avoid log n 
factors, we sample deterministically from 
each node of the BBD-tree that has at 
most k points, but whose parent has more 
than k.  (k = O(1/ε(d-1)/2))

Stronger Separation: Build the AVD for the 
sample, using twice the separation 
parameter value.

This guarantees O(k) reps per cell.
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ExtensionsExtensions

• Approx farthest-point Voronoi diagram
• Approx k-th order Voronoi diagram
• Approx spherical range counting

queries:
– Points lying within a (1+ε) expansion of the 

sphere may be counted.
– (AM’95) O(n) space and O(log n + 1/εd-1) 

time.



29

Approximate Range CountingApproximate Range Counting

Theorem: Given a point set S in Rd, and 
2 < γ < 1/ε, can answer ε-approx range 
queries with O((nγd log γ)/ε) space and 
query time O(log (nγ) + 1/(εγ)d).

O(log n + 1/εd)O(n)*2

O(log (n/ε))O((n log (1/ε))/εd+1)1/ε

Query TimeSpaceγ

*(1/ε) factor can be eliminated for γ=2
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Range SearchingRange Searching

q

Each cell is responsible for 
answering queries contained 
within its γ-expansion.

s
γs

Cell construction: is the same 
as in the space-efficient 
AVD. We store information 
of size O(1/(εγ)d) in both 
leaves and internal nodes.

b

Key: Handling points lying 
within cluster b.
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Example: Small Range CaseExample: Small Range Case
Fragments: Let b be the 

ball of radius r 
containing the small 
cluster. Subdivide into 
O(1/(εγ)d) fragments 
of side length εγr. For 
each store a weighted 
representative point.

b

εγr

r

2

1

2

4

Query: Test fragment reps for 
membership by brute force and sum 
weights.
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Approx kApprox k--Near NeighborsNear Neighbors

Approximate range query structure can 
be applied to answer approx k-NN 
queries.  (k provided at query time.)

Time and space are the same:
O((nγd log γ)/ε) space
O(log (nγ) + 1/(εγ)d) query time
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ConclusionsConclusions

ε-AVD: A spatial subdivision in which ε-NN 
queries reduce to point location.

(t,ε)-AVD: Allow t representatives per cell, 
select the closest.

Space Efficiency: Through deterministic 
sampling and bisector sensitivity.
– O(log n + 1/ε(d-1)/2) time
– O(n) space

Approx Range Queries and k-NN queries
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Open ProblemsOpen Problems

• Better bounds for range queries?
Range queries cannot used 
monotonicity properties that are used 
in nearest neighbor queries.

• Approximating Voronoi Cells: Some 
initial results by Arya and Vigneron.

• Dependence on ε: Must construction 
depend on ε?
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