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Large inputs 

Input point set, produce 
surface: 

20,000 - 20,000,000



Large inputs

Input surface, 
produce tetrahedral 
mesh for finite 
element simulations; 
also medial axis. 

Easily millions. 
Shewchuk (98?)



3D Delaunay O(n2) …
n/2 points on each 
of two skew lines.

Points on moment 
curve, etc. 

All examples 
distributed on 1D 
curve?



… but linear in practice.

Adding samples from surfaces in random 
order, #tetrahedra grows linearly. 

A & Choi, 01



Linear special cases
Dwyer 91 - Uniform random in ball (any 
constant dimension)
Erickson 02 - Nicely sampled solid, 
“spread” O(n1/3)
Golin & Na 00 - Uniform random on 
surface of convex polyhedron
Attali & Boissonnat 02 - Nicely sampled 
polyhedral surface 



Sampling models

Every point has 
1<=m<=k samples 
within distance εεεε. 

Consider behavior as n->infinity. 

Every point has a point within 
distance ε ε ε ε and no point within 
distance δ.



Almost linear

Golin & Na 02 - Uniform random on 
polyhedral surface, O(n log4n) 
Attali, Boissonnat & Lieuter 03 -Nice 
sampling, “generic” smooth surface S: 
singular points (with osculating maximal 
tangent balls) form a 1D set with fixed 
length, O(n lg n)



Lower bounds

Jeff Erickson (by Howard Sun)



Lower bounds

Given n, ε ε ε ε , can 
construct a suface 
and an εεεε−−−−sample with 
O(n2εεεε2) triangulation. 

O(εn) balls



Lower bounds
Helix with sqrt(n) turns, 
sqrt(n) samples per turn.

Fact (Erickson, Bochis & 
Santos): ball tangent to 
cylinder at 2 samples in 
same turn contains no 
other samples -> O(n3/2) 
Delaunay edges. 



Higher dimensions?

Conjecture: Nice distribution of 
samples from surface of co-dimension 
c has Delaunay triangulation of 
complexity O(n (c/2) +1) ?

Compute only 
“in-manifold” 
linear part?



Randomized incremental 
algorithm

Add points one by one in random order, 
update triangulation with flips. Simple,  
optimal (worst-case expected time).



Implementations
delcx - Edelsbrunner, Muecke, Facello 
92,96

hull - Clarkson 96

CGAL Delaunay hierarchy - Devillers,
Teillaud, Pion 01

pyramid - Shewchuk, unreleased



Memory usage

Performs great…until !



Point location strategies
Theoretical bottleneck. 

O(log n) per location possible with 
search data structure, but is it 
worth the effort in practice?

CGAL, hull - data structures

delcx, pyramid - no data structures



Idea
Blelloch, Blandford, Cardoze, Kadow 03

Compress representation of DT, while 
allowing updates. 



Representation

List vertex indecies 
around each edge 
(with  tricks to 
reduce redundancy).



Representation

Use difference 
coding so each index 
is just a few bits.

16

-2 
(= 14)



Assigning indices
Use kd-tree to 
assign similar 
indices to points 
(hopefully) near 
each other in 
Delaunay 
triangulation. 



Data structures
vertices

n

1 byte

hash(index,byte) 
-> index

edges

2 bytes



Data structures

edge

offsets to 
surrounding 
vertices



Compression results

100M tets = 10M pts

50min

2 Gig, 2.4 GHz



Idea
Partially randomized insertion order

• increase locality of reference, 
especially as data structure gets 
large

• retain enough randomness to 
guarantee optimality 



Biased Randomized 
Insertion Order (BRIO)

(A, Choi, Rote, 03)

• Choose each point with prob = 1/2.
• Insert chosen points recursively con 

BRIO.
• Insert the remaining points in 

arbitrary order.



BRIO

log n rounds of insertion

round logn

round logn-1

round logn-2

round 0



Analysis

Randomness has two benefits:

• Bound total number of tetrahedra

• Bound time required for locating 
new points in triangulation



Analysis
Adapted from Clarkson and Shor, Mulmuley

• triggers

• stoppers



Triggers and stoppers

triggers stoppers

A tetrahedron appears during 
construction if all its triggers are 
inserted before any of its stoppers.



Probability tet appears
<= P[the round where all triggers are chosen is  

<= the first round where any stopper is chosen]

= P [s+4 random numbers, the first 4 <= others]
= O(1/s4)

Analysis of optimality goes through directly.

4 1 3 2 5 5 4 5 5



Experiments - pyramid
Point location: “walk” from last inserted 
point. 

Multiple “Happy buddha”. 4096 kd-cells.

360 MHz, 128 M RAM, 4 GB Virtual 
memory 



Pyramid

10 million points on tiny machine

1/2 hour on reasonable machine



CGAL insertion strategies

Thanks to Monique Teillaud and Ian Bowman.

2.5 
hr

4M



Conclusion

Think of 3D Delaunay triangulation 
as essentially linear time, fairly 
efficient. 

Really independent subproblems 
would help.


