
Complexity and Computation of
3D Delaunay Triangulations

Nina Amenta (UC-Davis)

Large inputs

Input point set, produce
surface:

20,000 - 20,000,000

Large inputs

Input surface,
produce tetrahedral
mesh for finite
element simulations;
also medial axis.

Easily millions.
Shewchuk (98?)

3D Delaunay O(n2) …
n/2 points on each
of two skew lines.

Points on moment
curve, etc.

All examples
distributed on 1D
curve?

… but linear in practice.

Adding samples from surfaces in random
order, #tetrahedra grows linearly.

A & Choi, 01

Linear special cases
Dwyer 91 - Uniform random in ball (any
constant dimension)
Erickson 02 - Nicely sampled solid,
“spread” O(n1/3)
Golin & Na 00 - Uniform random on
surface of convex polyhedron
Attali & Boissonnat 02 - Nicely sampled
polyhedral surface

Sampling models

Every point has
1<=m<=k samples
within distance εεεε.

Consider behavior as n->infinity.

Every point has a point within
distance ε ε ε ε and no point within
distance δ.

Almost linear

Golin & Na 02 - Uniform random on
polyhedral surface, O(n log4n)
Attali, Boissonnat & Lieuter 03 -Nice
sampling, “generic” smooth surface S:
singular points (with osculating maximal
tangent balls) form a 1D set with fixed
length, O(n lg n)

Lower bounds

Jeff Erickson (by Howard Sun)

Lower bounds

Given n, ε ε ε ε , can
construct a suface
and an εεεε−−−−sample with
O(n2εεεε2) triangulation.

O(εn) balls

Lower bounds
Helix with sqrt(n) turns,
sqrt(n) samples per turn.

Fact (Erickson, Bochis &
Santos): ball tangent to
cylinder at 2 samples in
same turn contains no
other samples -> O(n3/2)
Delaunay edges.

Higher dimensions?

Conjecture: Nice distribution of
samples from surface of co-dimension
c has Delaunay triangulation of
complexity O(n (c/2) +1) ?

Compute only
“in-manifold”
linear part?

Randomized incremental
algorithm

Add points one by one in random order,
update triangulation with flips. Simple,
optimal (worst-case expected time).

Implementations
delcx - Edelsbrunner, Muecke, Facello
92,96

hull - Clarkson 96

CGAL Delaunay hierarchy - Devillers,
Teillaud, Pion 01

pyramid - Shewchuk, unreleased

Memory usage

Performs great…until !

Point location strategies
Theoretical bottleneck.

O(log n) per location possible with
search data structure, but is it
worth the effort in practice?

CGAL, hull - data structures

delcx, pyramid - no data structures

Idea
Blelloch, Blandford, Cardoze, Kadow 03

Compress representation of DT, while
allowing updates.

Representation

List vertex indecies
around each edge
(with tricks to
reduce redundancy).

Representation

Use difference
coding so each index
is just a few bits.

16

-2
(= 14)

Assigning indices
Use kd-tree to
assign similar
indices to points
(hopefully) near
each other in
Delaunay
triangulation.

Data structures
vertices

n

1 byte

hash(index,byte)
-> index

edges

2 bytes

Data structures

edge

offsets to
surrounding
vertices

Compression results

100M tets = 10M pts

50min

2 Gig, 2.4 GHz

Idea
Partially randomized insertion order

• increase locality of reference,
especially as data structure gets
large

• retain enough randomness to
guarantee optimality

Biased Randomized
Insertion Order (BRIO)

(A, Choi, Rote, 03)

• Choose each point with prob = 1/2.
• Insert chosen points recursively con

BRIO.
• Insert the remaining points in

arbitrary order.

BRIO

log n rounds of insertion

round logn

round logn-1

round logn-2

round 0

Analysis

Randomness has two benefits:

• Bound total number of tetrahedra

• Bound time required for locating
new points in triangulation

Analysis
Adapted from Clarkson and Shor, Mulmuley

• triggers

• stoppers

Triggers and stoppers

triggers stoppers

A tetrahedron appears during
construction if all its triggers are
inserted before any of its stoppers.

Probability tet appears
<= P[the round where all triggers are chosen is

<= the first round where any stopper is chosen]

= P [s+4 random numbers, the first 4 <= others]
= O(1/s4)

Analysis of optimality goes through directly.

4 1 3 2 5 5 4 5 5

Experiments - pyramid
Point location: “walk” from last inserted
point.

Multiple “Happy buddha”. 4096 kd-cells.

360 MHz, 128 M RAM, 4 GB Virtual
memory

Pyramid

10 million points on tiny machine

1/2 hour on reasonable machine

CGAL insertion strategies

Thanks to Monique Teillaud and Ian Bowman.

2.5
hr

4M

Conclusion

Think of 3D Delaunay triangulation
as essentially linear time, fairly
efficient.

Really independent subproblems
would help.

