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A Coloring of n
regions

What the …. is Conflict-Free Coloring of
Regions ?

is Conflict Free
(CF) if:

Any point in the
union is contained
in at least one region
whose color is
�unique�
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Problems Statement for discs

combinatorics

What is the minimum number f(n) s.t. any n discs

 can be CF-colored with only f(n) colors?

algorithmic

Given a set S of n discs, find a CF-coloring using

minimum # of colors

NP-HARD even for congruent discs

[Even, Lotker, Ron, S  02]



Motivation [Even et al.]: From Frequency
Assignment in cellular networks
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Goal: Minimize the total number of
frequencies



CF-coloring  discs  (cont)

Let P be a planar set of n pts
Let Dr(P) be the set of discs with radius r centered at

pts of P

Dr(P)



CF-coloring  discs  (cont)

Suppose we want to color P s.t. it would be a

CF-coloring of Dr(P) for any  r > 0

Dr(P)

Dr’(P)
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A Coloring of pts

Equivalent problem: Conflict-Free Coloring of
Points w.r.t Discs
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is Conflict Free if:

4 

Any (non-empty)
disc contains a
unique color
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A Coloring of pts

What is  Conflict-Free Coloring of pts w.r.t
Discs?
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is Conflict Free if: 1 



Problems Statement for Points w.r.t Ranges

1. Points (w.r.t ranges):

What is the smallest number f(n) s.t.

any n points can be CF-colored with only f(n)
colors?



Problem Statement for points (w.r.t discs)

Lower Bound  f(n)
> log n

What is the minimum number f(n) s.t. any n
points can be CF-colored (w.r.t discs) with f(n)
colors?

Easy:

n pts on a line! Discs => Intervals

1 3 2

≥≥≥≥ log n colorsn pts
≥≥≥≥n/2
≥≥≥≥ n/4



CF-coloring points w.r.t discs (cont)

Remark: Same works for any n pts in convex
position

Thm [Pach,Tóth 03]:

Any set of n points in the plane (not necessarily
in convex position) needs ΩΩΩΩ(log n) colors.



Points on a line: Upper Bound (cont)

log n colors suffice  (when pts colinear)

Divide & Conquer

1 32
Color median with 1

Recurse on right and left

Reusing colors!

32 33

 1



CF-coloring in general case: Upper Bound

Thm:

[Even, Lotker, Ron, S]

 O(log n) suffice!

Divide & Conquer doesn’t work!

n pts



Proof (from the … NOTEBOOK) of
Upper Bound: f(n) = O(log n)

Consider the Delauney Graph

i.e., the �empty pairs� graph
It is  planar.

 Hence, by the four color
Thm

∃∃∃∃  �large� independent set

n pts



Proof of: f(n) = O(log n) (cont)

∃  IS⊂⊂⊂⊂  P  s.t. |IS| ≥≥≥≥ n/4 and

IS is independent |P|=n
1. Color IS with 

2. Remove IS



Proof of: f(n) = O(log n) (cont)

∃  IS⊂⊂⊂⊂  P  s.t. |IS| ≥≥≥≥ n/4 and

IS is independent! |P|=n
1.Color IS with 

2. remove IS

3. Construct the new Delauney
graph � and iterate (O(log n)
times) on remaining pts



Proof of: f(n) = O(log n) (cont)

∃  IS⊂⊂⊂⊂  P  s.t. |IS| ≥≥≥≥ n/4 and

IS is independent! |P|=n
1.Color IS with 

2. remove IS

3. Iterate (O(log n) times) on
remaining pts



Algorithm is correct

Proof of: f(n) = O(log n) (cont)
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Consider a non-empty disc

�maximal� color 3

�maximal” color is unique



Proof of: f(n) = O(log n) (cont)

�maximal” color i is unique

Proof:

Assume i is not unique and

ignore colors < i

�maximal� color i

i



Proof of: f(n) = O(log n) (cont)

�maximal” color i is unique

Assume i is not unique and

ignore colors < i

�maximal� color i

i
i



Proof: maximal color i is unique

Consider the i�th iteration

independent

i
i

A third point exists
i



Proof: maximal color i is unique

Consider the i�th iteration

i
i

Contradiction!

i



General Framework for CF-coloring a range
space (P,R) :

∃ Find “large” IS in “Delauney graph”

2. Color IS with 

3.  Iterate on P IS



What about other ranges?

CF-coloring pts w.r.t  to other
ranges?

Upper bound of O(log n) holds
also for homothetic copies of a
convex body
How about axis-parallel
rectangles?



Thm [Har-Peled, S]: O(sqrt (n))
colors suffice.

CF-coloring pts w.r.t axis-parallel
rectangles

How large is an independent set in
the �Delauney� graph ?

It’s a big and long standing
open problem!

(dates back to ��.. 2002)



Note: If rectangles are not axis
parallel then �. not  interesting

CF-coloring pts w.r.t axis-parallel
rectangles

Any two points need distinct
colors, as one can `isolate� them by
a narrow rectangle



Thm: [Har-Peled � S]

f(n)= O(sqrt (n))

CF-coloring pts w.r.t axis-parallel
rectangles

∃  IS⊂⊂⊂⊂  P  s.t. |IS| = ΩΩΩΩ(sqrt (n))
and IS is independent

P



CF-coloring pts w.r.t axis-parallel
rectangles (cont)

∃  IS⊂⊂⊂⊂  P   |IS| = ΩΩΩΩ(sqrt (n)) and
IS is independent

Proof: Write the y-coordinates
from left to right

y1 y2 y3 � yn



CF-coloring pts w.r.t axis-parallel
rectangles (cont)

∃  IS⊂⊂⊂⊂  P   |IS| = ΩΩΩΩ(sqrt (n)) and
IS is independent

Thm: [Erdős-Szekeres]

Any sequence of n reals contains
a monotone subsequence of
length sqrt (n)

y1 y2 y3
�. yn



CF-coloring pts w.r.t axis-parallel
rectangles (cont)

Thm: [Erdős-Szekeres]

Consider such a monotone (increasing)
subsequence

y1, y2, �,ysqrt (n) Take every other point

Those are independent



CF-coloring pts w.r.t axis-parallel
rectangles (cont)

∃  IS⊂⊂⊂⊂  P   |IS| = ΩΩΩΩ(sqrt (n)) and
IS is independent

Hence the above algorithm

iterates O(sqrt (n)).
Slight improvement:

Thm [Alon] [Chan] [Pach,Tóth 03]:

O sqrt (n) sqrt(log n) .



Back to CF-coloring Regions:

Problems Statement for discs
Reminder:

What is the minimum number f(n) s.t. any n discs

 can be CF-colored with only f(n) colors?



CF-coloring discs
Thm  [Even, Lotker, Ron, S]:

Any n discs admits a CF-coloring with O(log n)
colors

n pts in R3 w.r.t
halfspaces, using
similar analysis



CF-coloring discs (cont)

We can transform the problem to that of

CF-coloring points in R3

w.r.t. positive half-spaces.

R3R2



CF-coloring discs (cont)

Observation:

We can assume that all points are extreme i.e.,

in convex position!



CF-coloring discs (cont)

CF-Color the extreme points using
the general framework



CF-coloring pseudo-discs

Thm [Har-Peled, S]:

Let R be a collection of n pseudo-discs. R admits a
CF-coloring with O(log n) colors.



CF-coloring pseudo-discs
What is so special about pseudo-discs ?

Thm  [Kedem, Livne, Pach, Sharir 86]:

The complexity of the union of any n pseudo-discs is
O(n).



CF-coloring pseudo-discs
More general Thm [Har-Peled, S]:

 CF-coloring with ‘small’ # of colors for regions
with ‘low union complexity’

For example:

αααα-fat convex objects [Efrat, Sharir]

(αααα,ββββ)-covered objects [Efrat 99]

…



How about axis-parallel rectangles?

Union complexity could be
quadratic !!!



CF-coloring axis-parallel rectangles

If all intersected by a
vertical line

Union complexity is linear
so O(log n) colors suffice



CF-coloring axis-parallel rectangles

For general case, apply
divide and conquer



CF-coloring axis-parallel rectangles

For general case, apply
divide and conquer

Obtain CF-coloring with
O(log2 n) colors

Open Problem:
Improve the  bound





CF-coloring a range space with a small

VC-dimension
Consider a range space induced by
n pts and straight line segments

VC-dimension is 2

n colors are necessary



CF-coloring a range space with a small

VC-dimension

VC-dimension is 2

n colors are necessary

So, is VC-dim irrelevant ?



CF-coloring a range space with a small

VC-dimension

Well, … of course it is relevant!

We just need to change the problem!

Define k-CF-coloring similarly…

… require some color to appear at
most k times.



CF-coloring a range space with a small

VC-dimension

n pts and straight line segments

VC-dimension is 2

one color suffice for
 2-CF-coloring



CF-coloring a range space with a small

VC-dimension
How many colors we need for CF-coloring n
pts in R3  w.r.t balls?

Unfortunately, ∃∃∃∃  examples where n colors
are necessary!

Thm [Har-Peled, S]:

 O( n1/k)  colors suffice for k-CF-coloring.

How about k-CF-coloring (k > 1)?



CF-coloring a range space with a small

VC-dimension
More generally

Thm [Har-Peled, S]:

For reasonably large k, O(log n) colors
suffice for for k-CF-coloring a range space
with VC-dim d.



CF-coloring pseudo-discs 

Defnition: a subset S’⊂⊂⊂⊂  S is admissible (w.r.t S)
if for any point p

1. p ∈∈∈∈  (at most one region of S’).

or

2. ∃∃∃∃  r ∈∈∈∈  S S’ s.t p∈∈∈∈  r.

Let S be a set of n pseudo-discs



CF-coloring pseudo-discs 

Example of

S’⊂⊂⊂⊂  S which is admissible (w.r.t S)



CF-coloring pseudo-discs 
Algorithm for CF-coloring S:

1. find a “large” admissible set S’⊂⊂⊂⊂  S

2. Color all regions of S’ with i

3. i:= i+1, recurse on S S’



CF-coloring pseudo-discs 
Proof: consider a point p.

i = maximal color of regions containing p.

i
i

k > iContradiction to

maximality  of i



CF-coloring pseudo-discs 
Lemma [Har-Peled, S]

Let S be n pseudo-discs.

 ∃∃∃∃  admissible set S’ s.t |S’| = ΩΩΩΩ(n).

Proof: Probabilistic plus some involved
geometric observations…

Plugging to above algorithm gives CF-coloring
with O(log n)  colors!



Further extensions of this model

k-CF-coloring ….

non-highly overlapping discs …

Dynamic coloring …





∃∃∃∃  admissible set S’ s.t |S’| = ΩΩΩΩ(n). (cont)

Let Sb be the set of black regions.

Def: A face f of the arrangement of S is ‘bad’ if

all regions containing f are ‘black’.

Construct a graph G on Sb where two black regions
(r1 , r2)  form an edge if r1∩∩∩∩r2 contains a bad face.

‘bad’ face



∃∃∃∃  admissible set S’ s.t |S’| = ΩΩΩΩ(n). (cont)

Note: An independent set in G is admissible!

We will show that with constant prob:

1. G contains at least n/3 vertices.

2. G  contains a ‘large’ independent set

‘bad’ face



∃∃∃∃  admissible set S’ s.t |S’| = ΩΩΩΩ(n). (cont)

1. G contains at least n/3 vertices.

W.H.P by Chernoff.

‘bad’ face

2. Let Xf be the random variable having values:


