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What the .... 1sConflict-Free Coloring of
Regions ?

A Coloring of n
regions
1s Conflict Free
(CF) if:

r

1

2

Any point in the
union 1s contained
in at least one region
whose color 1s
‘“unique’



Problems Statement for discs

combinatorics

What is the minimum number f(n) s.t. any n disScs

can be CF-colored with only f(n) colors?

algorithmic

Given a set Sof n discs, find a CF-coloring using

minimum # of colors

NP-HARD even for congruent discs

[Even, Lotker, Ron, S 02]



Motivation [Even et al.]: From Freguency
Assignment in cellular networks




Goal: Minimizethetotal number of
frequencies




CF-coloring discs (cont)

Let P be a planar set of n pts
Let D.(P) be the set of discs with radius r centered at

pts of P
@ / >0




CF-coloring discs (cont)

Suppose we want to color P s.t. 1t would be a

CF-coloring of D (P) forany r >0




Equivalent problem: Conflict-Free Coloring of
Pointsw.r.t Discs

A Coloring of pts Any (non-empty)

is Conflict Freeif: dlS.C contains a
unique color




What i1s Conflict-Free Coloring of ptsw.r.t
Discs?

A Coloring of pts

1s Conflict Freeif:

ory



Problems Statement for Pointsw.r.t Ranges

1. Points (w.r.t ranges):

What is the smallest number f(N) s.t.

any N points can be CF-colored with only f(n)
colors?




Problem Statement for points (w.r.t discs)

What is the minimum number f(Nn) s.t. any n
points can be CF-colored (w.r.t discs) with f(n)

colors?
L ower Bound f(n)

>logn

Easy:

N pts on a line! Discs => Intervals

—_

. > log n colors
> —

>
O—0—0—0
2



CF-coloring pointsw.r.t discs (cont)

Remark: Same works for any n pts in convex
position

Thm [Pach,Toth 03]:

Any set of N polnts 1n the plan¢ (not necessarily
i convex position) needs Q(lpg n) colors.



Pointson aline: Upper Bound (cont)

log n colors suffice (when pts colinear)

Divide & Conquer 1

3 2 31323

Color median with 1

Recurse on right and left

Reusing colors!



CF-coloring in general case: Upper Bound

Thm: Divide & Conquer doesn’t work!

[Even, Lotker, Ron, S]
O(log n) suffice!



Proof (from the ... NOTEBOOK) of
Upper Bound: f(n) = O(log n)

Consider the Delauney Graph

1.€., the “empty pairs” graph
Itis planar.

Hence, by the four color
Thm

“large” independent set




Proof of: f(n) = O(log n) (cont)
ISP st |IS =n/4 and

| S 1s Independent

1. Color ISwith 1
2. Remove | S

PI=n



Proof of: f(n) = O(log n) (cont)

I1SOP st. [|S|=n/4 and

| S 1s Independent!
1.Color | Swith 1

2. remove | S

3. Construct the new Delauney
oraph ... and iterate (O(log n)
times) on remaining pts

[Pl=n



Proof of: f(n) = O(log n) (cont)

ISP st |IS =n/4 and

| S is Independent! IP|=n
1.Color | Swith 1 5

2. remove | S 4
4

3. Iterate (O(log n) times) on 3
remaining pts



Proof of: f(n) = O(log n) (cont)
Algorithm 1s correct

Consider a non-empty disc
2
@

“maximal” color is unique

o
ol

“maximal” color 3




Proof of: f(n) = O(log n) (cont)

“maximal” color | is unigue

Proof: °

Assume | 1s not unique and

ignore colors < |

“maximal” color |




Proof of: f(n) = O(log n) (cont)

“maximal” color | is unigue

Assume | 1s not unique and e

1ignore colors < |

“maximal” color |




Proof: maximal color | isunique

Consider the |’th iteration

independent &

A third point exists




Proof: maximal color | isunique

Consider the |’th iteration

Contradiction!




General Framework for CF-coloring arange
space (P,R) :

Find “large’ |Sin “Delauney graph”

2. Color ISwith1; 1=i1+1

3. Iterateon P\IS o



What about other ranges?

CF-coloring pts w.r.t to other
ranges”?

Upper bound of O(log n) holds e

also for homothetic copies of a

convex body

How about axis-parallel
rectangles? o




CF-coloring ptsw.r.t axis-parallel
rectangles

Thm [Har-Peled, S]: O(sgrt (n))
colors suftice.

How large 1s an independent set in
the “Delauney” graph ?

It’sa big and long standing

open problem! R
@
(dates back to ........ 2002)




CF-coloring ptsw.r.t axis-parallel
rectangles

Note: If rectangles are not axis
parallel then .... not interesting

Any two points need distinct
colors, as one can "i1solate’ them ¢y
a narrow rectangle



CF-coloring ptsw.r.t axis-parallel
rectangles

Thm: [Har-Peled — S]
f(n)= O(sqrt (n))

IS P st. |15 =q(sgrt (n))
and | S is Independent




CF-coloring ptsw.r.t axis-parallel
r ectangles (cont)

ISOP [IS]=a(sgrt (n)) and
| S is Independent

Proof. Write the y-coordinates
from left to right

Yi Y2 Y3



CF-coloring ptsw.r.t axis-parallel
r ectangles (cont)

ISOP [IS]=a(sgrt (n)) and
| S is Independent

Thm: [Erdos-Szekeres]

Any sequence of n reals contains
a monotone subsequence of
length sgrt (n)

Yi Y2 Y3

Yn



CF-coloring ptsw.r.t axis-parallel
r ectangles (cont)

Thm: [Erdos-Szekeres]

Consider such a monotone (increasing)
subsequence

Yi> Yoo ---s¥Ysqrt (n) Takeevery other point @
O '

@ Those ar e independent




CF-coloring ptsw.r.t axis-parallel
r ectangles (cont)

ISOP [IS]=a(sgrt (n)) and
| S is Independent

Hence the above algorithm

iterates O(sgrt (n)).

Slight improvement:

Thm [Alon] [Chan] [Pach,T6th 03]:

O(sgrt (n)/sgrt(log n)).



Back to CF-coloring Regions:

Problems Statement for discs
Reminder:

What is the minimum number f(n) s.t. any n discs

can be CF-colored with only f(n) colors?



CF-coloring diSCS
Thm [Even, Lotker, Ron, S]:

Any N discs admits a CF-coloring with O(log n)
colors

v

N pts in R w.r.t
halfspaces, using
similar analysis



CF-coloring diSCS (cont)

We can transform the problem to that of

CF-coloring pointsin R3

w.r.t. positive half-spaces.

R2 I >R3

O




CF-coloring discs (cont)

Observation:

We can assumethat all pointsare extremei.e.,

In convex position!




CF-coloring diSCS (cont)

CF-Color the extreme points using
the general framework




CF-coloring pseudo-discs

Thm [Har-Peled, S]:

Let R be a collection of N pseudo-discs. R admits a
CF-coloring with O(log n) colors.

~ 2\




CF-coloring pseudo-discs

What is so special about pseudo-discs ?
Thm [Kedem, Livne, Pach, Sharir 86]:

The complexity of the union of any n pseudo-discsis
O(n).




CF-coloring pseudo-discs
Moregeneral Thm [Har-Peled, S]:

CF-coloring with ‘small’ # of colorsfor regions
with ‘low union complexity’

For example:
a-fat convex objects[Efrat, Sharir]
(a,f)-cover ed objects [Efrat 99]




How about axis-parallel rectangles?

x

Union complexity could be
guadratic !!!




CF-coloring axis-parallel rectangles

If all intersected by a
vertical line

—_—

Union complexity islinear
so O(log n) colors suffice




CF-coloring axis-parallel rectangles

~

For general case, apply
divide and conquer




CF-coloring axis-parallel rectangles

O(log? n) colors

) Obtain CF-coloring with I

~

For general case, apply
Open Problem: divide and conquer

Improvethe bound




How much time do I have?

OY VEY



CF-coloring a range space with a small

VC-dimension

Consider a range space induced by
/1 pts and straight line segments

=

VC-dimension is 2

@ 7

@
N /1 colors are necessary




CF-coloring a range space with a small

VC-dimension

So, is VC-dim Irrelevant ?

N

VC-dimension is 2

@ 7

@
@
N /1 colors are necessary




CF-coloring a range space with a small
VC-dimension
Well, ... of courseit isrelevant!

We|just need to change the problem!

Define k-CF-coloring smilarly...

... reguire some color to appear at
most k times.



CF-coloring a range space with a small

VC-dimension

N pts and straight line segments

o =

VC-dimension is 2
() 7

®
® N one color suffice for




CF-coloring a range space with a small
VC-dimension

How many colors we need for CE-coloring 77
pts in /R° w.r.t balls?

Unfortunately, [examples where 17 colors
are necessary!

How about A-CF-coloring (kK> 1)?
Thm [Har-Peled, S]:

O( n¥%) colorssufficefor k-CF-coloring.



CF-coloring a range space with a small
VC-dimension
More generally
Thm [Har-Peled, S]:

For reasonably large &, O(log n) colors
suffice for for k-CF-coloring arange space
with VC-dim d.



CF-coloring pseudo-discs (cont)
Let Sbeaset of n pseudo-discs

Defnition: asubset S [1 Sisadmissible (w.r.t S
If for any point p

1. p [ (at. most oneregion of S').

or

2.0r OS\S st pdr.
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CF-coloring pseudo-di (cont)

ithm for CF-coloring S

Algor
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CF-coloring pseudo-discs (cont)

Proof: consider a point p.

| = maximal color of regions containing p.

Contradicti(m
maximality of |




CF-coloring pseudo-discs (cont)
L emma [Har-Peled, S]
Let Sben pseudo-discs.

admissibleset S' st |S'| = Q(n).

Proof: Probabilistic plus some involved
geometric observations...

Plugging to above algorithm gives CF-coloring
with O(log n) colors!



Further extensions of this model
k-CF-coloring ....
non-highly overlapping discs...

Dynamic coloring ...
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admissibleset S' st |S'| = Q(n). (cont)
Let S betheset of black regions.

Def. A facef of thearrangement of Sis‘bad’ If
all regions containing f are ‘black’.

Construct a graph G on S, wheretwo black regions
(r,,r,) forman edgeif r,nr,contains a bad face.

‘bad’ face




admissibleset S' st |S'| = Q(n). (cont)

Note: An independent set in G isadmissible!

We will show that with constant prob:
1. G contains at least n/3 vertices.

2. G containsa ‘large’ independent set

‘bad’ face




admissibleset S' st |S'| = Q(n). (cont)

1. G contains at least n/3 vertices.
W.H.P by Chernoff.

2. Let X; betherandom variable having values:

‘bad’ face




