

Theorem A: $S \subseteq \mathbb{R}^{d+1}$, $\varepsilon > 0$. We can compute an ε -approximation of S of size $\star 1/\varepsilon^d$ in time $n+1/\varepsilon^d$ $\star 1/\varepsilon^{d/2}$ in time $n+1/\varepsilon^{3d/2}$ **Lemma 1:** \exists affine transform *M* s.t. $\star M(S) \in [-1,+1]^{d+1}, \text{conv}(M(S))$ is fat \star Q is an ε -approximation of $S \Leftrightarrow M(Q)$ is an ε -approximation of $M(S)$ **Computing -Approximations**

Geometric Approximation Using Core-Sets Center for Geometric Computing 11

Computing Faithful Measures

- \star *S*: Set of points, μ : A faithful measure, $\varepsilon > 0$
- \star Compute an (ε/c) -approximation Q of S
- \star Compute $\mu(Q)$ using a known algorithm
- \star Return $\mu(Q)$ By definition, $\mu(Q) \geq (1 - \varepsilon)\mu(S)$
- $\star \ \ S \subseteq \mathbb{R}^d$, $\varepsilon > 0$ Can compute a pair $p, q \in S$ s.t. $d(p, q) \ge (1 - \varepsilon) \operatorname{diam}(S)$ in time $n + 1/\varepsilon^{3(d-1)/2}$
- $\star \ \ S \subseteq \mathbb{R}^3, \varepsilon > 0$

Can compute an ε -approximation of the smallest simplex enclosing S in time $n + 1/\varepsilon^{9/2}$

Center for Geometric Computing

-Approximations of Polynomials

 $F = \{f_1, \ldots, f_n\}$: *d*-variate polynomials

Linearization [Yao-Yao, A.-Matoušek]

- \star Map $\varphi(x): \mathbb{R}^d \to \mathbb{R}^k$, $\varphi(x) = (\varphi_1(x), \ldots, \varphi_k(x))$
- \star Each f_i maps to a k-variate linear function h_i
- \star k: Dimension of linearization

Example: Lifting transform

- $\star f(x_1, x_2) = a_3^2 (x_1 a_1)^2 (x_2 a_2)^2$
- $\star \varphi(x_1, x_2) = (x_1, x_2, x_1^2 + x_2^2)$
- $\star h(y_1, y_2, y_3) = (a_3^2 a_1^2 a_2^2) + 2a_1y_1 + 2a_2y_2 y_3$

Center for Geometric Computing

-Approximations of Fractional Polynomials

Functions are not polynomials in many applications

- $-11\sqrt{m}$ \ldots $-11\sqrt{m}$
- \star $F = \{f_1, \ldots, f_n\}$: *d*-variate functions
- \star $f_i \equiv (h_i)^{1/r}$, h_i : *d*-variate polynomial, $r \ge 1 \in \mathbb{N}$
- \star $H = \{h_i \mid 1 \leq i \leq n\}$

Theorem D: $K \subseteq H$ is an $c\epsilon^r$ -approximation of $H, c > 0$ a constant, then $\{f_i \mid h_i \in K\}$ is an ε -approximation of F.

Corollary: If H admits a linearization of dimension k , then we can compute an ε -approximation of F of size

- \star 1/ ε^{rk} in time $n + 1/\varepsilon^{rk}$
- \star 1/ $\varepsilon^{r\sigma}$ in time $n+1/\varepsilon^{3rk/2}$, $\sigma = \min\{d, k/2\}$

Center for Geometric Computing

Geometric Approximation Using Core-Sets Center for Geometric Computing 23

Shape Fitting: Incremental Algorithm

[Varadarajan]

- \star S: Set of points in \mathbb{R}^2
- \star Find the smallest annulus containing S
- \star A simple iterative algorithm
- \star $A \subseteq S$: Initially, $|A| = 4$
- \star $W(A)$: Min-width annulus containing A
- \star while $S \not\subset (1+\varepsilon)W$
	- c : Center of w
	- $a \in S$: Nearest neighbor of c
	- $b \in S$: Farthest neighbor of c
	- -11 -11 -1 -1

Claim: The algorithm terminates in $O(1/\varepsilon)$ steps.

Works for other shape-fitting problems as well.

Geometric Approximation Using Core-Sets Center for Geometric Computing 24

Geometric Approximation Using Core-Sets Center for Geometric Computing 27

Inserting a Point

- \star Create a new set $P_0 = \{p\}$; $Q_0 = P_0$
- \star If there are two sets P_x , P_y of rank j
	- Compute an $\varepsilon/(j+1)^2$ -approximation Q_z of $Q_x\cup Q_y$
	- Delete Q_x, Q_y and add Q_z ;
	- $P_z = P_x \cup P_y; \text{rank}(P_z) = j + 1$
- \star Q_z is an $(\varepsilon/2)$ -approximation of P_z

Space: $\log(n)/\sqrt{\varepsilon}$, Processing time: $\log^3 n/\sqrt{\varepsilon} + 1/\varepsilon^{3/2}$

Corollary: $(1 - \varepsilon)$ -approximation of $\text{diam}(S)$, $\omega(S)$ can be maintained using $\log(n)/\sqrt{\varepsilon}$ space and $\log^3 n/\sqrt{\varepsilon}$ time.

 $P_{\rm z}$

 \mathbf{Q}_y P_x P_y \mathbf{P}_y $\mathbf{P}_{\mathbf{x}}$ $\mathbf{P}_{\mathbf{x}}$ $\mathbf{Q}_{\mathbf{y}}$ QT Q

Center for Geometric Computing

Also works for

- \star smallest enclosing ball/rectangle/triangle, minimum width annulus,
- \star Higher dimensions

Conclusions

- $\star \varepsilon$ -approximations in high dimensions
	- Polynomial dependence on $d, 1/\varepsilon$
- \star General technique for computing core sets for clustering
- \star Core sets for shape fitting if we want to minimize the rms distance
	- Given S , compute a cylinder C so that the rms distance between C and S is minimum
- \star Core sets and range spaces with finite VC dimensions

References

- \star A., S. Har-Peled, K. Varadarajan, Approximating extent measures of points, J. ACM, to appear.
- \star M. Bădoiu, S. Har-Peled, P. Indyk, Approximate clustering via core-sets, 34th ACM Sympos. Theory of Computing, 2002.
- \star M. Bădoiu and K. Clarkson, Smaller core-sets for balls, 14th ACM-SIAM Sympos. Discrete Algorithms, 2003
- \star S. Har-Peled and K. Varadarajan, High-dimensional shape fitting in linear time, 19th Annual Sympos. Computational Geometry, 2003.
- \star S. Har-Peled and Y. Wang, Shape fitting with outliers, 19th Annual Sympos. Computational Geometry, 2003.
- \star A., C. M. Procopiuc, and K. Varadarajan, Approximation algorithms for k-line center, 10th Annual European Sympos. Algorithms, 2002.
- \star P. Kumar and E. A. Yildirim, Approximate minimum volume enclosing ellipsoids using core sets, manuscript.

