

Geometric Approximation Using Core-Sets

Computing ε -**Approximations Theorem A:** $S \subseteq \mathbb{R}^{d+1}$, $\varepsilon > 0$. We can compute an ε -approximation of S of size $* 1/\varepsilon^d$ in time $n + 1/\varepsilon^d$ $* 1/\varepsilon^{d/2}$ in time $n + 1/\varepsilon^{3d/2}$ **Lemma 1:** \exists affine transform M s.t. $* M(S) \in [-1, +1]^{d+1}$, $\operatorname{conv}(M(S))$ is fat * Q is an ε -approximation of $S \Leftrightarrow M(Q)$ is an ε -approximation of M(S)

Geometric Approximation Using Core-Sets

Computing Faithful Measures

- ★ S: Set of points, μ : A faithful measure, $\varepsilon > 0$
- ★ Compute an (ε/c) -approximation Q of S
- ★ Compute $\mu(Q)$ using a known algorithm
- ★ Return $\mu(Q)$ By definition, $\mu(Q) \ge (1 - \varepsilon)\mu(S)$
- ★ $S \subseteq \mathbb{R}^d$, $\varepsilon > 0$ Can compute a pair $p, q \in S$ s.t. $d(p,q) \ge (1-\varepsilon) \operatorname{diam}(S)$ in time $n + 1/\varepsilon^{3(d-1)/2}$
- $\bigstar \ S \subseteq \mathbb{R}^3, \varepsilon > 0$

Can compute an ε -approximation of the smallest simplex enclosing S in time $n + 1/\varepsilon^{9/2}$

ε-Approximations of Polynomials

 $F = \{f_1, \ldots, f_n\}$: *d*-variate polynomials

Linearization [Yao-Yao, A.-Matoušek]

- $\bigstar \operatorname{Map} \varphi(x) : \mathbb{R}^d \to \mathbb{R}^k, \, \varphi(x) = (\varphi_1(x), \dots, \varphi_k(x))$
- ★ Each f_i maps to a k-variate linear function h_i
- \star k: Dimension of linearization

Example: Lifting transform

- ★ $f(x_1, x_2) = a_3^2 (x_1 a_1)^2 (x_2 a_2)^2$ ★ $\varphi(x_1, x_2) = (x_1, x_2, x_1^2 + x_2^2)$ ★ $h(y_1, y_2, y_3) = (a_3^2 - a_1^2 - a_2^2) + 2a_1y_1 + 2a_2y_2 - y_3$

- ε-Approximations of Fractional Polynomials

Functions are not polynomials in many applications

- $f_i(x) = d(x, p_i) r_i$
- ★ $F = \{f_1, \ldots, f_n\}$: *d*-variate functions
- ★ $f_i \equiv (h_i)^{1/r}$, h_i : *d*-variate polynomial, $r \ge 1 \in \mathbb{N}$
- $\bigstar \ H = \{h_i \mid 1 \le i \le n\}$

Theorem D: $K \subseteq H$ is an $c\varepsilon^r$ -approximation of H, c > 0 a constant, then $\{f_i \mid h_i \in K\}$ is an ε -approximation of F.

Corollary: If *H* admits a linearization of dimension *k*, then we can compute an ε -approximation of *F* of size

- $\bigstar 1/\varepsilon^{rk}$ in time $n+1/\varepsilon^{rk}$
- * $1/\varepsilon^{r\sigma}$ in time $n + 1/\varepsilon^{3rk/2}$, $\sigma = \min\{d, k/2\}$

Geometric Approximation Using Core-Sets

- Inserting a Point

- ★ Create a new set $P_0 = \{p\}; Q_0 = P_0$
- ★ If there are two sets P_x , P_y of rank j
 - Compute an $\varepsilon/(j+1)^2$ -approximation Q_z of $Q_x \cup Q_y$
 - Delete Q_x, Q_y and add Q_z ;
 - $P_z = P_x \cup P_y$; rank $(P_z) = j + 1$
- ★ Q_z is an $(\varepsilon/2)$ -approximation of P_z

Space: $\log(n)/\sqrt{\varepsilon}$, Processing time: $\log^3 n/\sqrt{\varepsilon} + 1/\varepsilon^{3/2}$

Corollary: $(1 - \varepsilon)$ -approximation of diam(S), $\omega(S)$ can be maintained using $\log(n)/\sqrt{\varepsilon}$ space and $\log^3 n/\sqrt{\varepsilon}$ time.

Also works for

. . .

- \star smallest enclosing ball/rectangle/triangle, minimum width annulus,
- ★ Higher dimensions

Conclusions

- $\star \epsilon$ -approximations in high dimensions
 - Polynomial dependence on $d, 1/\varepsilon$
- ★ General technique for computing core sets for clustering
- * Core sets for shape fitting if we want to minimize the rms distance
 - Given S, compute a cylinder C so that the rms distance between C and S is minimum
- ★ Core sets and range spaces with finite VC dimensions

- References

- ★ A., S. Har-Peled, K. Varadarajan, Approximating extent measures of points, J. ACM, to appear.
- ★ M. Bădoiu, S. Har-Peled, P. Indyk, Approximate clustering via core-sets, 34th ACM Sympos. Theory of Computing, 2002.
- ★ M. Bădoiu and K. Clarkson, Smaller core-sets for balls, 14th ACM-SIAM Sympos. Discrete Algorithms, 2003
- ★ S. Har-Peled and K. Varadarajan, High-dimensional shape fitting in linear time, 19th Annual Sympos. Computational Geometry, 2003.
- ★ S. Har-Peled and Y. Wang, Shape fitting with outliers, 19th Annual Sympos. Computational Geometry, 2003.
- ★ A., C. M. Procopiuc, and K. Varadarajan, Approximation algorithms for k-line center, 10th Annual European Sympos. Algorithms, 2002.
- ★ P. Kumar and E. A. Yildirim, Approximate minimum volume enclosing ellipsoids using core sets, manuscript.