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(— Kinetic Geometry
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S: Set of n moving points in R?
® pi=a;+ bt
Maintain the diameter (width, smallest enclosing disk) of S.
% [A., Guibas, Hershberger, Veach]
e Diametral pair can change ©(n?) times
e Kinetic data structure with ~ n? events

¥ Can we maintain the approximate diameter of S more efficiently?

e Is there a small core-set () C S s.t.
diam(Q(t)) > (1 — ¢) diam(S(t))?

¥ Kinetic bounding box hierarchies?
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Shape Fitting
- )

S: Set of n points in R?
¥ Fit a cylinder through S
e Find a cylinder C*
C*(8) = argminmaxd(p, C)

* For d = 3 [A., Aronov, Sharir]
e Optimal solution: 7"

e ((1)-approximation: ~ 1,°

¥« Can we compute an e-approximation of
C*(S) in linear time?

Is there is a small core set (Q C S so that C*(QQ) approximates C*(S)?
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Geometry in Streaming Model
—

t=1 t=2 t=3

t=4

~N

X

An incoming stream of points in R?

Y% Maintain certain statistical measures of the input stream

e Diameter, width, k-clustering

X

(] . .
Use log”"" 1, space and processing time

pos

Much work done on maintaining a summary of 1D data

X

Little known about higher dimensional data
[A., Krishnan, Mustafa, Venkatasubramanian], [Hershberger, Suri],
[Bagchi, Chaudhary, Eppstein, Goodrich]

% How much storage and processing time (per point) needed to maintain

_/

e-approximation of diam(,S) ? Maintain a core set!
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e-Approximation and Random Sampling
PP )

Y X — (S./2), R C 27: Set system (range space)
e 0: VC-dimension of X

¥ A C S e-approximation if forall r € R

r| N A
S| A

2

¥ A random subset A C S of size (f— log Q is an e-approximation of S
with high probability [Vapnik-Chervonenkis]

Y% Efficient deterministic algorithms for computing an e-approximation
[Matousek, Chazelle]
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(— e-Approximations

¥ An e-approximation approximates S in a combi-
natorial sense

e S: Set of points in R? ° ..
e R={rnS |risadisk} .
e /\: an e-approximation of (S, R) 3 °

e A approximates |S N 7|

¥ A does not approximate .S in a metric/geometric ° .
sense * eees
. ) . . Y o o .'
e diam(A) does not approximate diam(5) A

e A best-fit circle for A does not approximate @

the best-fit circle for S
What about other sampling schemes?
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(— Unified Framework for Core-Sets ~

¥ Notion of core-set is problem specicific

% Is there a unified framework that constructs core-sets for a wide class
of problems?

e Random subset is an e-approximation for a large class of range
spaces!

Define the notion of -approximation

¥ Core set for a wide class of problems

N g
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(— Extents of Functions ~
¥ F'=1{[i..... [, d-variate functions

e [/;: Upper envelope of F' [/;(2) = max; f;(x)

e [;: Lower envelope of F' L (x) = min,; [;(x)

e-approximation: G C F'is an e-approximation of F'if

(1 —¢)Ep(x) < Eg(x) Ve € RY

N e
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(— Linear Functions

¥ Relationship between linear functions and points

Geometric Approximation Using Core-Sets

¥ Many functions can be mapped to linear functions using linearization

¥« Upper and lower envelopes of linear functions are convex polyhedra

Center for Geometric Computing
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Dualit
(— y

H: Set of d-variate linear functions
¥ Duality: Maps a d-variate linear function to a
point in R%*! and vice-versa

h:xg11 = a1+ -+ aa%a+ Gap1
)
h* = (ala"'aa'd-l-l)
H* ={h* | h € H}

¥ Duality preserves vertical distances.

% Points in R? in the primal space map to directions in S¢ in the dual

space.

Geometric Approximation Using Core-Sets
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Duality and =-Approximations
—

S Set of points in R¢+!

v\.'z /\]P’ HEE AR 1

For z € R, &(x, S) = max,es (z, p) — minyes (x,p)
Directional width: For u € R?, w(u, S) = w(u, 5)
c-approximation:  C S is an e-approximation of .S if

w(u,Q) > (1 —e)w(u,S) Vu € R?

Claim: K C H is an e-approximation of H iff K* C H* is an e-
approximation of H*

N g
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Computing c-Approximations

Theorem A: S C R¥t!, ¢ > 0. We can compute an -approximation of S
of size

¥* 1/c%intimen + 1/
¥ 1/e¥? in time n + 1/e3/?
Lemma 1: d affine transform M s.t.
* M(S) € [-1,+1]¢tL, conv(M (9)) is fat

%* () is an e-approximation of S < M ((Q)) is an e-approximation of

M(S)
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Computing c-Approximations
—

Lemma 2: S: Set of n fat points [—1, +1]9+1, .. iRA .‘ .

e > 0. We can compute an e-approximation of S, e «:

of size .-..... ‘e
* 1/¢%intime n + 1/&4 Sl el
* 1/e%in time n + 1/e%4/? o

Sketch: B
% Compute 1/e%-size approximation Q / ]
¥ Draw a sphere B of radius 2 centered at origin \
* Draw a grid of size 1/¢%/? on B e ‘:

% For each grid point g, select the vertices of the
face of conv((Q) nearest to ¢

Geometric Approximation Using Core-Sets Center for Geometric Computing

/1(+): Function defined over point sets in R? is faithful if
¥ u(S) > 0forall S C RY
* Je>0 (1—ce)u(S) < u(@) < p(S)

for any e-approximation () of S

e,

)

7

faithful measure unfaithful measure

=

Faithful measures: Diameter, width, radius of smallest enclosing ball,
volume of the smallest enclosing box (simplex)

Nonfaithful measures: width of the thinnest spherical shell containing S

Geometric Approximation Using Core-Sets Center for Geometric Computing

(— Faithful Extent Measures ~

N g
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(— Computing Faithful Measures

¥ S: Set of points, p: A faithful measure, ¢ > 0
* Compute an (g/c)-approximation () of S
#* Compute (@) using a known algorithm

%* Return p(Q)
By definition, x(Q) > (1 — &) u(S)
* SCRE e>0
Can compute a pair p,q € S s.t. d(p,q) > (1 — ¢) diam(S)
in time 1 + 1 /2347 1)/2
* SCR3,e>0
Can compute an e-approximation of the smallest simplex enclosing S
in time 1 + 1/9/2

N g
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(— e-Approximations of Linear Functions

Theoream A + Duality:

Theorem B: H: set of n d-variate linear functions, e > 0. We can compute
an e-approximation of H of size

¥* 1/c%intimen + 1/

* 1/5(//2 in time n + 1/53(//2

N g
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(— e-Approximations of Polynomials

"= {/i...., [, d-variate polynomials
Linearization [Yao-Yao, A.-Matousek]

* Map p(z) : R? = R, p(z) = (p1(2),. . -, px(2))

¥ Each f; maps to a k-variate linear function h;

¥ k: Dimension of linearization

Example: Lifting transform

* f(z1,m2) = a3 — (z1 — a1)® — (z2 — ag)?

¥ (10(3317372) - (.Tl,SUQ,lE% +$§)

* h(y1,y2,y3) = (a3 — a] — a3) + 2a1y1 + 2a2y2 — ys3

N g
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(— e-Approximations of Polynomials

Lemma: K C H is an e-approximation of H <
G = {fi | h; € K} is an e-approximation of F'.

Theorem C: F': a family of n d-variate polynomials, k: dimension of
linearization, € > 0. We can compute an e-approximation of I of size

* 1/¢¥ intime n + 1/e"
¥ 1/51\./2 in time n, + 1/531.:/2
* 1/ intime n + 1/2%/2, ¢ = min{d, k/2}

N g
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Application I: Kinetic Geometry
—

S: Set of n moving points in R?
e p; = a; + b;t, a;, by € RY
o S() = {pt) [ 1< i <n}
¥ Q) - S an e-approximation if
Vu e R-1 teR
(1= e)w(u, S(t)) < wlu, Q(t))
* w(u, S(t)) = max (p(t), u) — min (p(t), u)

Define f;(u,t) = (p;(t),a); f; is a deg(2) polynomial
Claim: F = {f1,..., fn}, w(u, S(t)) = Er(u,t)

Suffices to compute an e-approximation of F'.

N g
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Application I: Kinetic Geometry
- )

Corollary: S: n moving points in R%, e > 0. An e-approximation of size
1/e%=1/2 can be computed inn + 1/3(@=1/2) time,

Maintaining the c-approximate diameter of S:
Y Compute an e-approximation () of S
% Use a kinetic data structure to maintain diam(Q))

% Ford =2
e #events ~ 1/c°
e Time spent at each event: log(1/2)

¥ Works for maintaining width, smallest enclosing ball/rectangle/simplex,

N g
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(— e-Approximations of Fractional Polynomials —\

Functions are not polynomials in many applications
o fi(w) =d(z,pi) — i
* F ={f1,..., fn}: d-variate functions
* fi = (hy)Y", h;: d-variate polynomial, 7 > 1 € N
* H={h;|1<i<n}

Theorem D: K C H is an ce"-approximation of H, ¢ > 0 a constant, then
{fi | hi € K} is an e-approximation of F.

Corollary: If H admits a linearization of dimension k, then we can com-
pute an e-approximation of F' of size

¥* 1/e"* intimen + 1/e"*
* 1/¢"% intime n + 1/e37%/2, ¢ = min{d, k/2}

N g
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Application II: Shape Fitting
—

S: Set of n points in R?
% Find the minimum-width annulus containing S. /
p(x): Min width of annulus containing S centered at x v
Y d(x,p): Distance between x and p 'I
p(z) = maxye s d(w, p) — minges d(w, p)
* filx)=d(x,p), F={f1,-.-fn}
p(z) = Ep(x)
Compute w* = min, Fp(x)

%* Compute an e-approximation G of F'; |G| = 1/¢

*

* Compute | ©* = argmin, Fq(x)

% Return Ep(z*); Ep(z*) < (1 4+ e)w*
* Time: n + 1/¢9()
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(— Core-Set for Annulus

% For each grid cell:

e Choose its center ¢

Geometric Approximation Using Core-Sets

% Draw an exponential grid on the plane of size O(1/¢)

e Add the nearest and farthest neighbor of c to the core set

Center for Geometric Computing

— Fitting a Cylinder
S: Set of n points in R3

1(¢): Min width of a shell containing S with axis ¢
Y d(/,p): Distance between £ and p
p(f) = maxyes d(4, p) — min,eg d(¢, p)
* [i(l) =d(l,pi), F={f1,... fn}
p(t) = Ep(f)
* Compute | " = miny (/)

e Compute an e-approximation G of F’

e Compute /* = arg ming E¢ ()

e Return Ep(¢*); Ep(£*) < (1+¢)w*
% Argue that (f;)? is a polynomial

\_
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¥ Find the minimum-width cylindrical shell that contains S.

Center for Geometric Computing
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(— Shape Fitting: Incremental Algorithm

[Varadarajan]

% S: Set of points in R?
¥ Find the smallest annulus containing S
¥ A simple iterative algorithm
* A C S:Initially, |[A| =4
% W (A): Min-width annulus containing A
* while S ¢ (14+¢e)W
e c: Center of w
e o € S: Nearest neighbor of ¢
e b € S: Farthest neighbor of ¢
e A=AU/{a,b}
Claim: The algorithm terminates in O(1/¢) steps.

Works for other shape-fitting problems as well.

.

Geometric Approximation Using Core-Sets Center for Geometric Computing

24

(— Dynamization

Maintain an e-approximation of S C R%+! under insertion/deletion

Y% Build a balanced-tree 1" on S
e h: Height of T'

¥ Each leaf stores ~ (’7’) v points
* (),: (¢/2h)-approximation of Q,, U Q,
e ¢: height of node v
e (),: (ie/2h)-approximation of P,
* Qroot 18 an £/2-approximation of S
o |Qroot|: (R/e)?

Maintain an (¢/3)-approximation @ of Qo0 of size 1/e

/2

\_
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(— Dynamization

Deleting a point p:
% Find the leaf z that contains p
% Delete p from z
% Recompute the e-approximations at the ancestors of z

¥ Update the structure of 7" if necessary

. ‘ l(,)f%' . 3d/2
Deletion time: - logn

Insertions can be handled similarly

Drawback: Update algorithm is highly nonrobust!

N g
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Application Ill: Handling Data Stream
—

% S: Stream of points in R?

Y% Maintain the e-approximation using logo(l) n space

Y Partition P into subsets Py, ..., P, o

e |P;| = 2/ for some j < log, n, j = rank(P;) Q"?
e P;’s are not maintained explicitly
* Maintain an (¢/2)-approximation @); of P; %
o Qi =3/Ve
e |, Qi is an (¢/2)-approximation of P.
% Maintain an ¢ /3-approximation ) of | J, Q; R

Ql=1/e

N e
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Inserting a Point
#* Create a new set Py = {p}; Qo = P

¥ If there are two sets P, P, of rank j .
e Compute an ¢/(j + 1)2-approximation @, of
Q:UQ,
e Delete (), ), and add Q) ,; quq
o P, =P, UPyrank(P,) =j+1 Fx g

* (@, is an (e/2)-approximation of P,
Space: log(n)/+/e, Processing time: log® n/+/e + 1/&%/?
Corollary: (1 — ¢)-approximation of diam(S), w(S) can be maintained
using log(n)/+/z space and log® n/+/e time.

Also works for

¥ smallest enclosing ball/rectangle/triangle, minimum width annulus,

¥ Higher dimensions
N ‘eoe
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Extensions
a )

¥ Computing e-approximations in high dimensions
[Bddoiu, Har-Peled, Indyk], [Badoiu, Clarkson], [Har-Peled, Varadarajan],
[Kumar, Mitchell, Yildirim], [Kumar, Yildirim]
e Smallest enclosing ball | 1/=]
e Smallest enclosing ellipsoid O (/=)
e l-median | /=“(")
¥ Computing e-approximations in presence of outliers [Har-Peled, Wang]
¥ Computing e-approximations for k-clusters
[Har-Peled], [A., Procopiuc, Varadarajan]

e k-centers

e k-line-centers

N e
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(— Minimum Enclosing Balls

[Badoiu, Clarkson]
% S: Set of points in R?
* Co = {pi}
* repeat i — 2/c| times
e /3;: Smallest ball enclosing C;
e ¢,.r;: Center and radius of B;
e 1, : Farthest point from ¢;
¢ |Ciy1=CiU{pit1}
¥ Return ',
Y R: Radius of the smallest ball enclosing .S
* A =71;/R
Claim: )\, ; = (1 + A\?)/2

.
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Handling Outliers
—

% P: n points, k: # of outliers, e > 0

¥ Wept: Width of min-width annulus contains n — £ points from P

% Find an annulus

e contains > n — k points of P
e intime O(n + (£)0@) @

e width < (1 4 €)wypt — e-approx.

Key component:

% There exists a e-coreset for various fitting problems
e SCP,|S|=k/cO@D
e can be computed in linear time

e measure for S e-approximates that for P

\_
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Conclusions
- )

Y% e-approximations in high dimensions

e Polynomial dependence on d, 1 /e
¥ General technique for computing core sets for clustering

¥ Core sets for shape fitting if we want to minimize the rms distance

e Given S, compute a cylinder C' so that the rms distance between
C and S is minimum

¥ Core sets and range spaces with finite VC dimensions

N g
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