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Overview of Talk:

• Some shortest path problems

– Visiting a sequence of regions: Touring Polygons Problem (TPP)

– Some “simple” 3D shortest path problems that are hard

– Shortest paths in 3D, over a terrain

• A TSP variant: TSP with Neighborhoods

• Min-diameter bounded degree spanning trees: Freeze-Tag Problem



The Touring Polygons Problem (TPP) [Dror-Efrat-Lubiw-M]:

Given a sequence of k polygons in the plane, a start point s, and a target
point, t, we seek a shortest path that starts at s, visits in order each of the
polygons, and ends at t.
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Related Problem: TSPN:

If the order to visit {P1, P2, . . . , Pk} is not specified, we get the NP-hard
TSP with Neighborhoods problem.

TSPN: O(log n)-approx in general
O(1)-approx, PTAS in special cases



The Fenced Problem:

Here that part of the path connecting Pi to Pi+1 must lie inside a a simple
polygon Fi, called the fence.
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The Fenced Problem:
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Applications: Parts Cutting Problem:
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Applications: Safari Problem:
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Applications: Zookeeper Problem:
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Applications: Watchman Route Problem:

Essential cut

s

Fact: The optimal path visits the essential cuts in the order they appear
along ∂P .



Summary of TPP Results:

• Disjoint convex polygons: O(kn log(n/k)) time, O(n) space

(For fixed s, {P1, P2, . . . , Pk}, O(k log(n/k)) shortest path queries
to t.)

• Arbitrary convex polygons: O(nk2 log n) time, O(nk) space

• Full combinatorial map: worst-case size Θ((n − k)2k)

Output-sensitive algorithm; O(k + log n)-time shortest path queries.

• TPP for nonconvex polygons: NP-hard

FPTAS, as special case of 3D shortst paths



• Applications:

– Safari: O(n2 log n) vs. O(n3)

– Watchman: O(n3 log n) vs. O(n4)

floating watchman: O(n4 log n) vs. O(n5)

We avoid use of complicated path “adjustments” arguments, DP

– Parts cutting: O(kn log(n/k))



The Last Step Shortest Path Map:

Pass−through Region
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The Last Step Shortest Path Map:

Pass−through regionv9
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Relationship to 3D Shortest Paths:
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Relationship to 3D Shortest Paths:

We show:

• Holes are convex: poly-time last-step SPM

• Non-convex holes: NP-hard



3D Shortest Paths: Background:

• NP-hard in general [CR]

• FPTAS [Pa],[Cl],[CSY],[H-P]

• Special cases: surfaces, k convex polytopes, buildings of k heights



Shortest Paths Among Stacked (Flat) Obstacles:

If obstacles are complements of convex polygons: TPP solves
(case includes halfplanes)
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Shortest Paths Among Stacked (Flat) Obstacles:

If obstacles are complements of convex polygons: TPP solves
(case includes halfplanes)
What if obstacles are convex polygons?
Canny-Reif: NP-hard for stacked 45-45-90 triangles
What about axis-aligned rectangular obstacles?
New result: Still NP-hard [M-Sharir]



Hardness Proof:

Theorem: The Euclidean shortest path problem is NP-hard for a stack
of axis-parallel rectangles as obstacles.

Proof: from 3-SAT, based on modified Canny-Reif proof

• Use a cascade of path splitter gadgets to get 2n combinatorially
distinct path classes

Paths encode an assignment of the n variables: path # i encodes
assignment given by the (n-bit) binary representation of i.

• Use path shuffle gadgets to rearrange paths within a class

• Use shuffle gadgets to construct a literal filter: the only path classes
that pass through unobstructed are those having bit bi set accordingly



• Assemble 3 literal filters per clause filter: output of clause filter will
contain short path classes only for those assignments (if any) that
satisfy the instance of 3SAT

• Collect paths back into one path class, using inverted path splitting
gadgets.

• Final question: Is there a path from s to t of length L?

Yes, iff the formula is satisfied.



Path Splitting Gadget:
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Path Splitting Gadget:



Path Shuffle Gadget:

Output Order: 4,2,3,1
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Input Order:  1,2,3,4



Literal Filter:

b  = most significant bit
i

2  shortest path classesn

i−1 shufflers

(n−i+1) shufflers

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 4 1 5 2 6 3 7



Clause Filter:

3−way splitter

3−way splitter



Instances of Stacked Obstacles:

Poly Time

NP−Hard



Shortest Paths Among Balls:

Also NP-Hard: L1 shortest paths among balls in 3D

OPEN: Euclidean shortest paths among balls in 3D? Unit balls?

OPEN: Euclidean shortest paths among aligned cubes in 3D?
Unit cubes?



Shortest Path Over Walls [M-Sharir]:

Top View

n lines in 3D: e1, . . . , en, each ⊥ to y-axis
ei: y = ai, z = bix + ci, with a1 < a2 < · · · < an

Each ei defines a (vertical halfplane) wall Wi

Goal: Find L2-shortest path from s to t avoiding the interiors of walls



Some properties of π(·) and L(·):

π(ζ) = shortest path from s to ζ ∈ <3

L(ζ) = length of path π(ζ)

(1) π(ζ) is y-monotone, polygonal, bending on some of the edges ei

(2) π(ζ) = π1‖π2, with π1 ascending (in z), π2 descending

(3) The path π(ζ) is unique

Corollary: As ζ varies along a line `,

(i) L(ζ) is a convex function of ζ ∈ `

(ii) π(ζ) varies continuously (Hausdorff metric)

(iii) The combinatorial structure of π(ζ) changes only when it passes
through 3 collinear (mutually visible) points on 3 distinct edges

(4) Solution by convex programming: LP-type problem



The Shortest Path Map:

Combinatorial Complexity of the Shortest-Path Map:
Lemma: For each i < n, the set

Ci = {ζ ∈ en | π(ζ) ∩ ei 6= ∅}

is connected.
Theorem: The number of combinatorial changes in the structure of π(ζ),
as ζ moves along en, is O(n).



L1 Shortest Paths Over Terrains [M-Sharir]:
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Structure: Can assume path goes up from s to s′ (altitude h), then along a
shortest path in the plane z = h to t′, then down to t

Atomic intervals: Partition heights h according to vertex heights (vz), and
critical heights at which ∃ edges e, e′ of T for which the points e(h) and
e′(h) have the same x- or y-coordinate.
O(n2) atomic intervals



L1 Shortest Paths Over Terrains (cont):

Lemma: The length function, L(h), is concave, piecewise-linear over
each atomic interval

Algorithm: Compute shortest path for each of the O(n2) critical heights,
and take best: O(n3 log n).

Work in progress: Analyzing the SPM for L1 shortest paths over a terrain.

OPEN: Euclidean shortest paths over a terrain?

Note: SPM has worst-case exponential size



TSP with Neighborhoods (TSPN):

S = {X1, X2, . . . , Xk}, a set of regions that must be visited



TSP with Neighborhoods (cont):

Problem introduced by Arkin-Hassin

• “obvious” heuristics do not work:

TSP approx on centroids ( as representative points)

greedy algorithms ( Prim- or Kruskal-like)

• O(1)-approx for “nice” regions:

(a) parallel unit segments

(b) unit disks

(c) translates of a polygon P

• “Combination Lemma”



TSPN – More Approximation Results:

• General (connected) regions: O(log k)-approx [MM95]

use guillotine rectangular subdivisions (GRS), DP

O(n5) time

(difficulty is in DP)

• Improved running time, using modified GRS [GL99]

O(n + k log k)



Difficulty in Applying TSP Methods to TSPN:

How to define a subproblem succinctly?

Which regions must be visited inside R?



Recent Progress on TSPN:

• O(1)-approx for regions of comparable size (diameter) [DM]

• PTAS for disjoint fat objects of comparable size [DM]

(use a new charging scheme and m-guillotine subdivisions)

• O(1)-approx for disjoint fat objects of any size [BGK+]

• Hardness of approx:

No c-approx with c < 391/390, unless P=NP [BGK+]

No c-approx with c < 2, unless NP ⊆ TIME(nO(log log n)) [SS]



Recent Progress on TSPN (cont):

• O(1)-approx, PTAS for planes in <3 [ADM’03]

• Latest breakthrough:

O(1)-approx for arbitrary length horizontal segments in <2 [Mi03]

(novel charging scheme, with m-guillotine method)

Work in progress: Extend to general disjoint regions? PTAS?


