On Some Geometric Optimal Path and Network Problems

Joe Mitchell

State University of New York Stony Brook, NY 11794–3600

Collaborators: E. Arkin, M. Bender, M. Dror, A. Dumitrescu, S. Fekete, M. Sharir, M. Skutella

Overview of Talk:

- Some shortest path problems
	- **–** Visiting a sequence of regions: Touring Polygons Problem (TPP)
	- **–** Some "simple" 3D shortest path problems that are hard
	- **–** Shortest paths in 3D, over a terrain
- A TSP variant: TSP with Neighborhoods
- Min-diameter bounded degree spanning trees: Freeze-Tag Problem

The Touring Polygons Problem (TPP) [Dror-Efrat-Lubiw-M]:

Given a sequence of k polygons in the plane, a start point s , and a target point, t, we seek a shortest path that starts at s, visits in order each of the polygons, and ends at t.

Related Problem: TSPN:

If the order to visit $\{P_1, P_2, \ldots, P_k\}$ is **not** specified, we get the NP-hard TSP with Neighborhoods problem.

TSPN: $O(\log n)$ -approx in general $O(1)$ -approx, PTAS in special cases

Here that part of the path connecting P_i to P_{i+1} must lie inside a a simple polygon Fⁱ , called the *fence*.

Applications: Parts Cutting Problem:

Applications: Safari Problem:

Applications: Zookeeper Problem:

Applications: Watchman Route Problem:

Fact: The optimal path visits the essential cuts in the order they appear along ∂P.

Summary of TPP Results:

- Disjoint convex polygons: $O(kn \log(n/k))$ time, $O(n)$ space (For fixed $s, \{P_1, P_2, \ldots, P_k\}, O(k \log(n/k))$ shortest path queries to t .)
- Arbitrary convex polygons: $O(nk^2 \log n)$ time, $O(nk)$ space
- Full combinatorial map: worst-case size $\Theta((n-k)2^k)$ Output-sensitive algorithm; $O(k + \log n)$ -time shortest path queries.
- TPP for nonconvex polygons: NP-hard FPTAS, as special case of 3D shortst paths
- Applications:
	- **–** Safari: O(n 2 $\log n$) vs. $O(n^3)$ **–** Watchman: O(n 3 $\log n$) vs. $O(n^4)$

floating watchman: $O(n^4)$ $\log n$) vs. $O(n^5)$

We avoid use of complicated path "adjustments" arguments, DP

– Parts cutting: $O(kn \log(n/k))$

The Last Step Shortest Path Map:

The Last Step Shortest Path Map:

Relationship to 3D Shortest Paths:

Relationship to 3D Shortest Paths:

Relationship to 3D Shortest Paths:

We show:

• Holes are convex: poly-time last-step SPM

• Non-convex holes: NP-hard

3D Shortest Paths: Background:

- NP-hard in general **[CR]**
-

• FPTAS **[Pa],[Cl],[CSY],[H-P]**

• Special cases: surfaces, k convex polytopes, buildings of k heights

If obstacles are **complements** of convex polygons: TPP solves (case includes halfplanes)

If obstacles are **complements** of convex polygons: TPP solves (case includes halfplanes) What if obstacles are convex polygons?

If obstacles are **complements** of convex polygons: TPP solves (case includes halfplanes) What if obstacles are convex polygons? Canny-Reif: NP-hard for stacked 45-45-90 triangles

If obstacles are **complements** of convex polygons: TPP solves (case includes halfplanes) What if obstacles are convex polygons? Canny-Reif: NP-hard for stacked 45-45-90 triangles What about axis-aligned rectangular obstacles?

If obstacles are **complements** of convex polygons: TPP solves (case includes halfplanes) What if obstacles are convex polygons? Canny-Reif: NP-hard for stacked 45-45-90 triangles What about axis-aligned rectangular obstacles? New result: Still NP-hard **[M-Sharir]**

Hardness Proof:

Theorem: The Euclidean shortest path problem is NP-hard for a stack of axis-parallel rectangles as obstacles.

Proof: from 3-SAT, based on modified Canny-Reif proof

• Use a cascade of path splitter gadgets to get 2^n combinatorially distinct path classes

Paths encode an assignment of the n variables: path $\# i$ encodes assignment given by the $(n$ -bit) binary representation of i.

- Use path shuffle gadgets to rearrange paths within a class
- Use shuffle gadgets to construct a literal filter: the only path classes that pass through unobstructed are those having bit b_i set accordingly
- Assemble 3 literal filters per clause filter: output of clause filter will contain short path classes only for those assignments (if any) that satisfy the instance of 3SAT
- Collect paths back into one path class, using inverted path splitting gadgets.
- Final question: Is there a path from s to t of length L ? Yes, iff the formula is satisfied.

Path Shuffle Gadget:

Input Order: 1,2,3,4

Output Order: 4,2,3,1

Literal Filter:

Clause Filter:

Instances of Stacked Obstacles:

Shortest Paths Among Balls:

Also NP-Hard: L_1 shortest paths among balls in 3D

OPEN: Euclidean shortest paths among balls in 3D? Unit balls?

OPEN: Euclidean shortest paths among aligned cubes in 3D? Unit cubes?

Shortest Path Over Walls [M-Sharir]:

Top View

n lines in 3D: e_1, \ldots, e_n , each \perp to *y*-axis $e_i: y = a_i, z = b_i x + c_i$, with $a_1 < a_2 < \cdots < a_n$ Each e_i defines a (vertical halfplane) *wall* W_i Goal: Find L_2 -shortest path from s to t avoiding the interiors of walls

Some properties of $\pi(\cdot)$ **and** $L(\cdot)$:

- $\pi(\zeta) =$ shortest path from s to $\zeta \in \Re^3$ $L(\zeta) =$ length of path $\pi(\zeta)$
- **(1)** $\pi(\zeta)$ is y-monotone, polygonal, bending on some of the edges e_i
- **(2)** $\pi(\zeta) = \pi_1 || \pi_2$, with π_1 ascending (in z), π_2 descending
- **(3)** The path $\pi(\zeta)$ is unique

Corollary: As ζ varies along a line ℓ ,

- (i) $L(\zeta)$ is a convex function of $\zeta \in \ell$
- (ii) $\pi(\zeta)$ varies continuously (Hausdorff metric)
- (iii) The combinatorial structure of $\pi(\zeta)$ changes only when it passes through 3 collinear (mutually visible) points on 3 distinct edges
- **(4)** Solution by convex programming: LP-type problem

The Shortest Path Map:

Combinatorial Complexity of the Shortest-Path Map: **Lemma:** For each $i < n$, the set

$$
C_i = \{ \zeta \in e_n \mid \pi(\zeta) \cap e_i \neq \emptyset \}
$$

is connected.

Theorem: The number of combinatorial changes in the structure of $\pi(\zeta)$, as ζ moves along e_n , is $O(n)$.

L¹ **Shortest Paths Over Terrains [M-Sharir]:**

s' t' t s s' t'

Structure: Can assume path goes up from s to s' (altitude h), then along a shortest path in the plane $z = h$ to t' , then down to t

Atomic intervals: Partition heights h according to vertex heights (v_z) , and critical heights at which \exists edges e, e' of T for which the points $e(h)$ and $e'(h)$ have the same x- or y-coordinate.

 $O(n^2)$ atomic intervals

L¹ **Shortest Paths Over Terrains (cont):**

Lemma: The length function, $L(h)$, is concave, piecewise-linear over each atomic interval

Algorithm: Compute shortest path for each of the $O(n^2)$ critical heights, and take best: $O(n^3 \log n)$.

Work in progress: Analyzing the SPM for L_1 shortest paths over a terrain.

OPEN: Euclidean shortest paths over a terrain?

Note: SPM has worst-case exponential size

TSP with Neighborhoods (TSPN):

 $S = \{X_1, X_2, \ldots, X_k\}$, a set of regions that must be visited

TSP with Neighborhoods (cont):

Problem introduced by Arkin-Hassin

• "obvious" heuristics do not work:

TSP approx on centroids (as representative points) greedy algorithms (Prim- or Kruskal-like)

- $O(1)$ -approx for "nice" regions:
	- **(a)** parallel unit segments

(b) unit disks

- **(c)** translates of a polygon P
- "Combination Lemma"

TSPN – More Approximation Results:

- General (connected) regions: $O(\log k)$ -approx [MM95] use guillotine rectangular subdivisions (GRS), DP $O(n^5)$ time (difficulty is in DP)
- Improved running time, using modified GRS [GL99] $O(n + k \log k)$

Difficulty in Applying TSP Methods to TSPN:

How to define a subproblem succinctly?

Recent Progress on TSPN:

- $O(1)$ -approx for regions of comparable size (diameter) [DM]
- PTAS for disjoint fat objects of comparable size [DM] (use a new charging scheme and m -guillotine subdivisions)
- $O(1)$ -approx for disjoint fat objects of any size [BGK+]
- Hardness of approx:

No c-approx with $c < 391/390$, unless P=NP [BGK+] No *c*-approx with $c < 2$, unless $NP \subseteq TIME(n^{O(\log \log n)})$) [SS]

Recent Progress on TSPN (cont):

• $O(1)$ -approx, PTAS for planes in \mathbb{R}^3

[ADM'03]

• Latest breakthrough:

O(1)-approx for arbitrary length horizontal segments in \Re^2 [Mi03] (novel charging scheme, with m -guillotine method)

Work in progress: Extend to general disjoint regions? PTAS?