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Themes

• Auctions.

• VCG Payments.

• Nash Equilibria.
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Combinatorial Auctions

• A set of distinct items: S = {1, 2, . . . , m}.
• A set of bundle bids: B = {B1, B2, . . . , Bn}, where Bi ⊂ S.

• Each bid has an associated positive price.

• Winner determination problem is to choose a collection of
item-disjoint bids with maximum total value.

• Originally proposed for airport landing slot auctions in
seventies; repopularized in ’90s by FCC and e-commerce.
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Complexity

• Complementarity and substitutability among items.

• Airport takeoff slot valuable only if one can get a matching
landing slot at destination.

• A hotel booking in Maui is valuable only if you also get a
matching airline booking.

• FCC’s wireless spectrum license auctions. Bidders have
regional complementarities.

• However, winner determination is NPC, and
inapproximable to Ω(n1−ε).

• Special cases, branch-and-bound, commercial MIP solvers
etc.
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Single Good Auctions

• Multiple indistinguishable units of a good.

• Examples: bandwidth, oil, raw materials, electricity,
equities etc.

• Goldberg, Hartline, Karlin consider digital goods auctions:
music, video etc. GHK focus on incentives and demand
discovery.

• We focus on computational complexity for clearing the
auction.

• If only bids on single units allowed, not very interesting.
But expressive bidding (demand curves) make the problem
more interesting.
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Demand Curves
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• Buyers and sellers must be matched on their curves.

• Piecewise linear curves can express bidders’ marginal
decreasing values, and sellers’ volume discounts.
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Pricing Policies
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• One price for everyone. “Equilibrium”. No profit.

• One price for seller, one for buyers. Non-discriminatory.

• One price for each agent. Discriminatory.
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Various Auctions

• Forward Auction: Single seller, multiple buyers.

• Reverse Auction: Single buyer, multiple sellers.

• Exchanges: Multiple buyers, multiple sellers.

• Results hold for all cases. I will say “auction” generically.
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Non-discriminatory Price Auction

• Consider 1 buyer and 1 seller, with linear curves.
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General Piecewise Linear Curves

• If buyer and seller can trade only in the quantity range
[q′, q′′], then optimum occurs either at q∗ (if q∗ ∈ [q′, q′′]), or
at that endpoint of the range [q′, q′′] which is closer to q∗.
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Algorithm
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• Build aggregate demand D and aggregate supply S curves.

• Decompose the feasible region into trapezoids.

• Each trapezoid is 1-seller, 1-buyer trade problem.

• From prices, p∗bid and p∗ask, determine each agent’s quantity.
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Discriminatory Price Auctions

• Agents pay/receive different prices. Potentially higher
revenue.

• But the problem is NP-Complete—reduction from integer
Knapsack.

• Item (size s, value v) maps to “s units at total price ≤ v.”
Knapsack capacity maps to Q units for auction.
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The Linear Case

• If all bids are linear functions, then an O(n log n) algorithm.
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• A cute combinatorial algorithm. (Greedy doesn’t work.)
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An Example

• Maximize
∑n

j=1 pjqj s.t. qj = −ajpj + bj and
∑

j qj ≤ Q.

• Eliminate pj’s from obj. and add supply constraint using
Lagrangian multiplier

max

(
bjqj

aj
− q2

j

aj

)
+ λ(Q−

n∑

j=1

qj).

• We get
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• Raise clearing prices for all buyers uniformly.

• But invalid because qj can be negative!
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Raise-and-Drop Algorithm

1. Bids S = {1, 2, . . . , n}.
2. Initialize (pj, qj) =

(
bj

2aj
,

bj

2

)
. If

∑
j∈S qj ≤ Q, done.

3. Let ` be bid with min pj.

4. Set p′j = pj + p`, q′j = −ajp
′
j + bj, for j ∈ S.

5. If
∑

j∈S q′j ≤ Q, output the Lagrangian solution using bids
of S. Otherwise, set S = S − {`}, and go to step 3.
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An Example

• Total supply Q = 50.

• Unconstrained: q1 = 0.5, q2 = 5, q3 = 50.

• Revenue with buyer 3 alone: $2500.

• Optimal revenue $2512.5: q1 = 0, q2 = 2.5, q3 = 47.5,
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q = −p + 100

q = −p + 11
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q = −p + 10
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Some Problems and Directions

• Tractable Cases: Shoreline properties, tree structured etc.
[RPH ’98], [SS 01, 02].

• Even with rectangle shaped bids, the problem is
NP-Complete.

• What if items were points, and all bids were on Delaunay
triples? Is this tractable? Approximable?

• Approximation bounds for discriminatory auctions with
piecewise linear curves.

• Extend Demand Curve auction to multi-dimensions.

• Independent demand curves, but tied together via buyer’s
budget constraints.
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Vickrey-Clark-Groves
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Vickrey Payments

• What if geometric objects had minds of their own?

• What if they were selfish and strategic?

• How would you build a DT or MST if “points” won’t tell
you their position?

• Think of ad hoc network nodes. Battery life is precious, yet
nodes are expected to route other’s packets.

• How would you solicit true “position, cost or type” of a
point?

• Economists’ answer: make it worth their while!
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Rationality Based Computing

• Algorithmic Mechanism Design, algorithmic game theory.
Nisan–Ronen, Feigenbaum-Papadimitriou-Shenker,
Roughgarden-Tardos etc.

• Internet is a huge, dynamic, heterogeneous system without
any centralized control.

• Different participants (users and network service providers)
have different/conflicting goals.

• A user cares about his individual download, search, or
computational job.

• Network provider cares about congestion, 3rd party traffic,
revenue, network capacity etc.

• Cooperation not likely, not easy to attempt, not at all
enforcible.



Subhash Suri UC Santa Barbara

TCP: An example

• TCP widely used for Internet communication.

• Breaks messages into packets and reassembles them back at
destination. Handles packet delay, out of sync, or losses.

• Congestion control in TCP implements exponential
decrease in transmission rate when packet loss is detected.

• But any user can modify the TCP code on his desktop, and
replace it with something else!

• For example: double the transmission rate at packet drop!

• So, TCP relies on good citizenship but has no way to
enforce it.

• How to design rules of the game so that desired outcome is
reached?
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Shortest Path Routing

• A user wants to send data from node x to node y.

• Assume links in the network are owned by different agents
(network providers).
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• Links make bids to route the data.

• User chooses the x–y shortest path, using these bids as
weights. Pays the winning edges.

• What can go wrong?
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Selfishness and Speculation

• Each edge wants to maximize its utility: (payment – cost).

• If edges are paid what they bid, they have incentive to lie.

• Creates an endless cycles of speculation and
counter-speculation for strategic bidders.

• Vickrey mechanism is strategy-proof—an agent maximizes
his utility by declaring his true cost.

• In Vickrey, each winning edge e is given a bonus:

d(x, y; G \ e) − d(x, y).



Subhash Suri UC Santa Barbara

Vickrey Scheme

• Let c(e) be the bid of edge e.

• Using c()’s as weights, compute shortest path from x to y.

• Edges not on the winning path receive no payment.

• An edge e on the winning path receives

c(e) + (d(x, y; G \ e)− d(x, y))
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An Algorithmic Problem

• How quickly can one compute Vickrey payments for all the
edges?

• The naive method requires Θ(n) single source shortest path
computations.
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• O(m + n log n) total time, for undirected graphs. [HS ’01]

• Ω(m
√

n) “lower bound,” for directed graphs. [HSB ’03]
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A Path Graph

• Shortest path path(x, y) = (e1, e2, . . . , ek) includes all vertices
of V .

cut

x yeu vi

• Let Ei ⊂ E be edges crossing the cut for ei.

• Let d−i(x, y) = d(x, y; G \ ei). Then,

d−i(x, y) = min
(u,v)∈Ei
(u,v) 6=ei

d(x, u) + c(u, v) + d(v, y).
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Algorithm

• Process e1, . . . , ek left to right. Heap stores edges of cut Ei.

• d(x, u) + c(u, v) + d(v, y) is the key for (u, v); O(1) time.
cut

x yeu vi

• Min key in the heap determines d−i(x, y).

• Moving from (vi−1, vi) to (vi, vi+1), delete from H edges
terminating at vi, and insert edges starting at vi.

• Ordinary heap implementation computes d−i for all i in
total O((n + m) log n) time. Fibonacci Heap for improved
bound.
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General Undirected Graphs

• Focus on SP Tree Tx rooted at x; cuts (Vx, Vy) defined by its
partition.

• Replacement path still involves a (u, v) jump across the cut.

ex y

u v

Vx Vy

• Distance formula remains:

d−i(x, y) = min
(u,v)∈Ei
(u,v) 6=ei

d(x, u) + c(u, v) + d(v, y).
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Maintaining Tails

• Use SP tree into y for distances d(v, y).

• Claim: If v ∈ Vy, then dG(v, y) = d−i(v, y).

i+1i e i
x y

v

Vx Vy

vv

• If path(v, y; G \ ei) includes ei, then the red path from v to
vi+1 is shorter than the blue path from vi+1 to v.

• But that is impossible. So, dG(v, y) = d−i(v, y).
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Maintaining Cuts

• How to identify and maintain cut edges.

• Group off-spine nodes in blocks.

x y

u v

B1

B2

B4

B5

e

3B

a b

• (u, v) belongs to all cuts between a = block(u) and b = block(v).

• Cut for (vi, vi+1) has Vx = ∪i
j=0Bj, and Vy = ∪k

j=i+1Bj.
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Problems and Directions

• Similar work on MST, matching, scheduling etc.

• Imagine having to incentivize geometric objects. Which
problems fit this bill?

• Some examples: Obstacles paid to move out of the way.
Marginal value of a facility.

• Obvious question ones: efficient Vickrey payment. Less
obvious ones: What is possible?
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Problems and Directions

• Some ad hoc networking applications—node have incentive
to lie about their position, their range etc.

• Adhoc-VCG: A Truthful and Cost-Efficient Routing
Protocol for Mobile Ad Hoc Networks with Selfish Agents.
Eidenbenz and Anderegg, Mobicom 2003.

• On the approximability of range assignment on radio
networks in presence of selfish agents. Ambuhl, Clementi,
Penna, Ross, Silvestri.
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Nash Equilibria—Price of Anarchy
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Optimization without Coordination

• Users of the Information Superhighway are selfish.

• Each wants to minimize his own latency (cost).

• Each also causes congestion for other users.

• A centralized routing won’t work—users on slow links will
want to change their routes.

• A Nash equilibrium routing is the best one can hope for:
no single user is motivated to deviate.

• Price of anarchy is the ratio between NE solution and
centralized optimum.
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Selfish Routing

s t

l(x) = x

l(x) = 1

• Social optimum: 1
2 traffic on each link. Total latency 3

4.

• Nash has entire traffic on lower link. Total latency 1.

• [RT, KP, CV] analyze how bad selfish routing is.

• Examples. If the latency function is arbitrary, then price of
anarchy is unbounded. With linear latency functions, the
worst case ratio is 4/3.
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Load Balancing

• m servers or machines. n clients or jobs.

• Each job can be run only on a subset of servers.

• Load balancing problem: find an optimal assignment of jobs
to servers.

• Clients are selfish and strategic; however, each client’s
latency depends on other clients’ actions.

• Anarchic load balancing—no coordinator.

• A non-cooperative game among clients—strategies are
server choices, payoff is latency.

• Nash assignment: no client motivated to switch unilaterally.

• Forthcoming by [Kothari, Suri, Toth, Zhou].
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P2P Application

• Decentralized, distributed data-sharing networks.

• Napster, Gnutella, Freenet, CAN, Chord, Pastry, Tapestry,
Morpheus, KaZaa, Farsite, Jxta, OceanStore...
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"A Beautiful Mind"

Cloud

Internet

Q

P

• No central authority: all nodes autonomous and same
functionality (democracy of peers).

• Resource sharing by direct exchange between peers.
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The Model

• A bipartite graph between n clients and m servers.

• A matching assigns each client to an adjacent server.

A Nash assignment

1 u2 u3

v1 v2 v3

u1 u2 u3

v1 v2 v3

u1 u2 u3

v1 v2 v3

An assignment

u

• Let vj be the speed of server j. If j is assigned `j clients,
then the latency λ() to each client is vj/`j.

• Cost of a matching cost(M) =
∑n

i=1 λ(ui).
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Various Models

1. Atomic Assignment

• Each client matched to at most 1 server.
• Server j has speed vj.
• If server j has deg(j) clients, then its load is `j = deg(j).
• Each client of server j experiences latency `j/vj.

2. Fractional Assignment

• A client can split its job among multiple servers: xij.
• Server j’s load is `j =

∑
i xij.

• Server j completes all its assigned jobs at time `j.
• Client i’s latency is λi = maxj{`j | xij > 0}.
• Fractional model similar to one used by KaZaa.

3. Lp norm latency functions.
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Optimal vs. Nash

• Assuming vj = 1, optimal always Nash, but not vice versa.

1 u2 u3

v1 v2 v3

u1 u2 u3

v1 v2 v3

u1 u2 u3

v1 v2 v3

u

Optimal: cost = 3 Nash: cost = 5

• Proof: Suppose a client can switch from server i to j.

• cost(M ′)− cost(Mopt) =
(
(dj + 1)2 + (di − 1)2

)− (d2
i + d2

j)
= 2(dj − di + 1) < 0.
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Optimal vs. Nash

• But with different server speeds, optimal is not always
Nash.

u1 u2 u3 u1 u2 u3u 1 u2 u3

1 11/4

Optimal: cost = 8 Nash: cost = 9

1 1/41/4

• cost(Opt) = 2 + 2 + 4; cost(Nash) = 3 + 3 + 3.
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Lower Bound on Worst-case Nash

• A tree structure: each node has a client-server pair. Edges
between neighboring levels only.

• In optimal, each client assigned to its server in the pair, for
a total cost of n.

• In Nash, each client matched to a server at higher level.
The total cost becomes 2n− 1.

Cost = 21  (4 + 8 + 12)

Worst−Case NashOptimal

server

client

Cost = 11
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Upper Bounds: Unit Speeds

• Theorem:
The price of anarchy is at most 1 + 2/

√
3 ≈ 2.15.

• The price of anarchy has form 1 + 2m/n, which tends to 1 as
the ratio between jobs and servers tends to ∞.

• Awerbuch et al. proved that Greedy has competitive ratio
(1 +

√
2)2 ≈ 5.82.

• So, rationality helps!

• Same techniques improve greedy’s ratio to 2 +
√

5 = 4.236.
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General Upper Bounds

• Theorem: The price of anarchy is at most 5/2.

• Theorem: With latency measured by Lp norm, the price of
anarchy is p

log p(1 + o(1)).

• Theorem: With fractional model, Nash is always optimal.
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Related work

• Voronoi Games. Played on continuous plane. Bound the
second mover’s advantage. [Cheong, Har-Peled, Linial,
Matousek], [Fekete-Meijer].

• Location Games. Discrete location choices, non-uniform
customer distribution. [Chawla, Rajan, Ravi, Sinha].
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Problems and Directions

• Price of anarchy in geometric matching (client-server
assignment)? Cost ∝ to distance, load. Prefer close servers,
but switch if load too high.
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• Competitive market share. Cost and benefit ∝ radius
(advertisement budget, customers). How bad is a NE
solution compared to centralized optimum?


