Linear Algebra
and
Cubes

7

Bernd Gartner
ETH Zurich



Cube Optimization (I)

Given an acyclic unique sink orientation:

acyclic orientation of the n-cube graph,
such that every nonempty face has a
unique sink.

Orientation might be defined. ..

in @ geometric way in an abstract way
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Cube Optimization (II)

Wanted:

Algorithm for finding the global sink
as quickly as possible

We consider simplex-type methods (walks along
directed paths); efficiency depends on pivot
rule being used.

/

exponentially polynomially
many steps many steps



Linear Algebra...
...over the reals

IS used in constructing geometric cube orien-
tations and analyzing geometric pivot rules

A

Dantzig’s rule
Steepest Descent
Largest Increase

...over finite fields

IS used in constructing abstract cube orienta-
tions and analyzing combinatorial pivot rules

Bland’s rule
Random-Edge
Random-Facet
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Part I:
Linear Algebra
Over the Reals

Klee & Minty's worst-case linear pro-
gram, showing that Dantzig’s rule may
require exponentially many steps



Poor Man’s Worst-Case LP

maximize xp,

subject to
0 < z1 < 1
exi_1 < x; < l—ex;_ 1, 1=2,...,n
X3
X2
%1 e=1/3

Observation: Simplex algorithm with “stupid”
pivot rule may take 2™ — 1 steps!



The Klee-Minty Cube (I)

Goal: Fool “smart” pivot rulel

Poor man’s LP

maximize xn

subject to
0 < z1 < 1
EX;_1 S XLy S 1—8:87;_1, i=2,...,n
Yy - = 21
Yi - — XT; —EX;—1, 1=2,...,1n
slack variables s;, +1=1,...,n

Y

Poor man’s LP in standard equality form

maximize Y%, e"'y; subject to

1
yi+2232151 ]yj‘|‘5i —
Y =2
si 2




The Klee-Minty Cube (II)

S1 = ]. — Y1
S> = 1 — Y2 — 25y1
s3 = 1 — yz3 — 2y — 252y1
z = y3 + ey +  eyr
2
Swap Y1, S1 via Y1 = 1— 51
4
y1 = 1 — S1
s = 1—2¢ — Y2 + 2es1
s3 = 1—2&2 — ys — 2ey> + 2e2sq
z = g° + y3 + ey —  e%s1
_ 2
Swap Y2, 82 Via Yo = 1 — 2 — 554 2es1
4
2 = e—¢€° + y3 — eso + €251
U
2 = € + y3 — eso — €%
4
z = 1l—e¢ — 83 4+ eso + e%y;




The Klee-Minty Cube (III)

Lemma (fooling the stupid): The *“stupid”
pivot rule of always choosing the variable with
smallest positive coefficient in the z-row leads
to 2™ — 1 pivot steps on the poor man's worst-
case LP...

... While one step suffices for the *“smart’” pivot
rule of always choosing the variable with /argest
positive coefficient.

Lemma (fooling the smart): For £ > 3, the
Klee-Minty cube is the tweaked poor man’s LP

maximize Y., "'y, subject to

R
vi+2X. ey +s
Yi
Si

2l i =1,...,n
0, 2=1,...,n
0, 2=1,...,n

VIV

It is a cube on which the “smart” pivot rule of
always choosing the variable with /argest pos-
itive coefficient in the z-row leads to 2™ — 1
pivot steps. <= Dantzig’s rule!



Part II:
Linear Algebra
Over GF(2)

Ignorant (combinatorial) pivot rules
Combinatorics of the Klee-Minty cube
Random-Edge on the Klee-Minty cube
MatouSek’s abstract cubes

Random-Facet on MatousSek cubes



Ignorant Pivot Rules (I)

Random-Edge: among the variables with pos-

itive coefficient in the z-row, choose one uni-
formly at random.

e Behavior only depends on sign pattern in
the z-row, not on actual coefficients

e Expected number of steps is the same for

the poor man’s worst case LP and the Klee-
Minty cube

Questions:

e \What is this expected number of steps?

e Does the Klee-Minty cube fool the igno-
rant?



The Combinatorial z-row (I)

SEIRITY

z-row of optimal tableau:

2 =1 — s3 — eyo — &%y
vertex 0 0] 0
value 0 0 0




The Combinatorial z-row (II)

z = 4+ y3 4+ ey + %y
vertex 1 0] 0
value 1 1 1
z = e 4+ ys + ey — e%s1
vertex 1 0] 1
value 1 1 0]
2 = e—¢€° 4+ y3 — eso + €251
vertex 1 1 1
value 1 0] 1
z = e + ys — e€s2 — ¢&%n
vertex 1 1 0]
value 1 0] 0
2z = 1—¢ — s3 + eso + €°n1
vertex 0] 1 0]

value 0] 1 1




Combinatorial KM-cube (I)
e vertices = GF(2)", values = GF(2)"

e adjacent vertices differ in exactly one co-
ordinate

e vertex v has value Av, where

A=|11 0 |eGF@m™"
11 1

e v has better objective function value than
v iff Av < Av' under lexicographic ordering
of the values

e the step from v to v + e; is a legal (im-
proving) pivot iff (Av); = 1, equivalently
if there is an odd number of l-entries in
V1 ...0;.



Combinatorial KM-cube (II)

X3
0
(0,1,0
(0,1,1)
w10 Vertices
(1,0,0) X,
1,11
(1,0,1)
Xq
X3
0
0,1,1
(0,1,0
w00 Values
(1,1,1) X,
(1,0,2)
(1,1,0




Random-Edge Revisited

Fast Game (on values): among all 1-entries,
choose one uniformly at random and flip it,
along with all entries further to the right.

1 1 O 1
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— expected number of steps is O(n?)

Lower bound?7?7?



T he Slow Game

Slow Game: among all entries, choose one
uniformly at random; if it is a 1-entry, flip it,
along with all entries further to the right, oth-
erwise, do nothing.

1 1 0 1 1

l
11000

!
0 1 1 1

void flip

o« O

O« K~

void flip

O <«+— O

O «—

0 0 1
!
0O 00 0O

= expected number of steps is Q(n?/logn)



Fast vs. Slow Game (I)

o flip of w at i (real or void): w — Ay,

where
[ 1 | column < \
1
AW = 0 — rOw 1
1 1

e flip sequence: s = (iq,io,...)
o flip of w with (s,k): w — w($k) where
wSk) - — A(s,k)w,

AR — Atk ... A2 g0

e S = set of flip sequences, VYV =GF(2)"



Fast vs. Slow Game (II)

o F(w),S(w): expected number of steps in
fast and slow game, starting with w

o« F(n) = 2—17% S F(w)
weyY

F(n) = Z prob(w(s’k) o= w(s’k_l))

=1 SV
0 1 mn

= > => prob(w(sk—1). = 1)
k=1"i=1 SV
1 n o0

= => > prob((ASk=1)y). = 1)
Ni=1k=1 SV
1 mn o0

= =3 % prob((e;f Ak = 1)
Ni=1k=1 SV
1 mn 0

= — 3 ¥ prob(e;l Alsk=1) £ 0)
2n /Z1p=1 S
1



Random-Edge Performance

Theorem: There is a starting vertex of the
n-dimensional Klee-Minty cube for which the
simplex algorithm with the Random-Edge pivot
rule requires an expected number of

Q(nz/ logn)
steps.

= Klee-Minty cube “mildly” fools Random-
Edge



Ignorant Pivot Rules (II)

Random-Facet: among the variables with pos-
itive coefficient in the z-row, choose the one
whose index comes first in an initially chosen
random permutation w of the indices.

e = (1,2,...,n): “stupid” rule,

2" — 1 steps
e t=(n,n—1,...,1): “smart” rule,
1 step

Theorem: For every starting vertex of the n-
dimensional Klee-Minty cube, the simplex al-
gorithm with the Random-Facet pivot rule re-
quires O(n2) steps, and this bound is tight.



Beyond Klee-Minty Cubes

o Klee-Minty cube:

vertex v — value w =

==
R = O
= O O
c

e MatouSek cube:

vertex v — value w = Av,

with A € GF(2)"*" being a lower-triangular,
invertible matrix

Questions:

e Are MatousSek cubes combinatorial models
of linear programs over (deformed) cubes?

e Does some Matousek-cube fool Random-
Facet? (It won't fool Random-Edge!)



Matousek Cubes

Examples:

e The MatouSek cube A = I,, is generated
by the “unit cube” LP

maximize Y% ji-x;
subject to

0 < Ly < 1, ’i=1,...,TL

e [ he 3-dimensional MatouSek cubes

1 1
Aj=1]0 1 A= 11
111 011

do not come from any LP — they are gen-
eralized LPs



MatousSek Cubes — Results

Theorem: For a random starting vertex of
a random n-dimensional MatouSek cube, the
simplex algorithm with the Random-Facet pivot
rule requires an expected number of eS2(v/n)
steps, and this bound is tight.

= MatousSek cubes fool Random-Facet

Theorem: For every starting vertex of ev-
ery LP-induced n-dimensional MatouSek cube,
the simplex algorithm with the Random-Facet
pivot rule requires O(n?) steps, and this bound
is tight.

= still no LP known to fool Random-Facet



LP-induced Matousek Cubes

Observation: If the n-dimensional MatouSek
cube A is LP-induced, then A does not contain
the ‘“forbidden minors”

1
A;=1]0 1 C Ap =
111

OrE
==

Lemma: Let A € GF(2)"*™ be a matrix with-
out forbidden minors. Then A~! has at most
one off-diagonal one-entry per row.

Corollary: Among the 2(3) MatouSek cubes,
at most n! ~ 271997 gre LP-induced.



Examples:

Unit cube:

Klee-Minty cube:

1
1
1 1 1 1 1



Random-Facet: the LP-Case

e Random permutation w of the coordinates,
start vertex v

e Among the coordinates 7 which are flip-
pable ((Av);, = 1), flip the first one in m;
repeat until O is reached

k: last coordinate in =«

v': first vertex where no coordinate different

from k is flippable

v": successor of v’ (if existing)



Cheap Case: v, =0

'U‘].OO].]. /)
7_‘_‘15342:>’U—OOOOO

= done!

Expensive Case: vp =1

v|/1 0011

A
W‘21534 Avvy= 0 0 0 1 O

o Av”:Av’—I—Akzek—l—Ak
o ’U”:Alzl—l-ek

e the possible v” over all k£ with v, = 1 are
columns of A=l — 1,

e in the LP-induced case, for any j, v;-’ =1
for at most one of the possible v

e With 5 the second-to-last coordinate in m,
v"" leads to the cheap case vé-’ = 0 with high
probability (over the random choice of k)



Beyond GF(2)7?

e V =_GF(q)" can be interpreted as the ver-
tex set of a polytope which is the product
of n simplices of dimension ¢ — 1 each

e Any lower-triangular, invertible matrix A &
GF(g)™*™ induces an acyclic unique sink
orientation on this polytope

e ... but relation between fast and slow game
does not hold — flips are not linear func-
tions anymore

e Performance of Random-Facet on such ori-
entations? Lower bound of

-S2(v/nlog(ng))

might hold for large ¢ and would be signif-
icant



