Linear Algebra and Cubes

Bernd Gärtner ETH Zürich

Cube Optimization (I)

Given an acyclic unique sink orientation:

acyclic orientation of the *n*-cube graph, such that *every nonempty face has a unique sink*.

Orientation might be defined...

Cube Optimization (II)

Wanted:

Algorithm for finding the global sink as quickly as possible

We consider *simplex-type methods* (walks along directed paths); efficiency depends on *pivot rule* being used.

exponentially many steps

polynomially many steps

Linear Algebra...

... over the reals

is used in constructing *geometric* cube orientations and analyzing *geometric* pivot rules

... over finite fields

is used in constructing *abstract* cube orientations and analyzing *combinatorial* pivot rules

- Bland's rule
- Random-Edge
- Random-Facet

• • • •

Part I: Linear Algebra Over the Reals

Klee & Minty's worst-case linear program, showing that *Dantzig's rule* may require exponentially many steps

Poor Man's Worst-Case LP

 $\begin{array}{ll} \text{maximize} & x_n \\ \text{subject to} \end{array}$

$$\varepsilon = 1/3$$

Observation: Simplex algorithm with "stupid" pivot rule may take $2^n - 1$ steps!

The Klee-Minty Cube (I)

Goal: Fool "smart" pivot rule!

Poor man's LPmaximize x_n subject to $0 \leq x_1 \leq 1$ $\varepsilon x_{i-1} \leq x_i \leq 1 - \varepsilon x_{i-1}, \quad i = 2, \dots, n$

$$y_{1} := x_{1}$$

$$y_{i} := x_{i} - \varepsilon x_{i-1}, \quad i = 2, \dots, n$$
slack variables $s_{i}, \quad i = 1, \dots, n$

$$\bigcup$$

Poor man's LP in standard equality form maximize $\sum_{i=1}^{n} \varepsilon^{n-i} y_i$ subject to $y_i + 2 \sum_{j=1}^{i-1} \varepsilon^{i-j} y_j + s_i = 1, \quad i = 1, \dots, n$ $y_i \ge 0, \quad i = 1, \dots, n$ $s_i \ge 0, \quad i = 1, \dots, n$

The Klee-Minty Cube (II)

The Klee-Minty Cube (III)

Lemma (fooling the stupid): The "stupid" pivot rule of always choosing the variable with *smallest* positive coefficient in the *z*-row leads to $2^n - 1$ pivot steps on the poor man's worst-case LP...

... while one step suffices for the "smart" pivot rule of always choosing the variable with *largest* positive coefficient.

Lemma (fooling the smart): For $\varepsilon > 3$, the *Klee-Minty cube* is the tweaked poor man's LP

maximize
$$\sum_{i=1}^{n} \varepsilon^{n-i} y_i$$
 subject to
 $y_i + 2 \sum_{j=1}^{i-1} \varepsilon^{i-j} y_j + s_i = \frac{\varepsilon^{2i}}{i}, i = 1, \dots, n$
 $y_i \ge 0, \quad i = 1, \dots, n$
 $s_i \ge 0, \quad i = 1, \dots, n$

It is a cube on which the "smart" pivot rule of always choosing the variable with *largest* positive coefficient in the z-row leads to $2^n - 1$ pivot steps. \Leftarrow *Dantzig's rule*!

Part II: Linear Algebra Over GF(2)

- Ignorant (combinatorial) pivot rules
- Combinatorics of the Klee-Minty cube
- Random-Edge on the Klee-Minty cube
- Matoušek's abstract cubes
- Random-Facet on Matoušek cubes

Ignorant Pivot Rules (I)

Random-Edge: among the variables with positive coefficient in the *z*-row, *choose one uniformly at random*.

- Behavior only depends on *sign pattern* in the *z*-row, *not* on actual coefficients
- Expected number of steps is the same for the poor man's worst case LP and the Klee-Minty cube

Questions:

- What is this expected number of steps?
- Does the Klee-Minty cube fool the ignorant?

The Combinatorial *z*-row (I)

•
$$\left\{ \begin{array}{c} x_n \\ s_n \end{array} \right\} \rightarrow \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right\}$$

• $\left\{ \begin{array}{c} x_i \\ s_i \end{array} \right\} \rightarrow \left\{ \begin{array}{c} 0 \\ 1 \end{array} \right\}, \quad i = 1, \dots, n-1$
• $\left\{ \begin{array}{c} + \\ - \end{array} \right\} \rightarrow \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right\}$

z-row of optimal tableau:

The Combinatorial *z*-row (II)

1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Combinatorial KM-cube (I)

- vertices $\equiv GF(2)^n$, values $\equiv GF(2)^n$
- adjacent vertices differ in exactly one coordinate
- vertex v has value Av, where

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \in GF(2)^{n \times n}.$$

- v has better objective function value than v' iff Av < Av' under lexicographic ordering of the values
- the step from v to $v + e_i$ is a legal (improving) pivot iff $(Av)_i = 1$, equivalently if there is an odd number of 1-entries in $v_1 \dots v_i$.

Combinatorial KM-cube (II)

Random-Edge Revisited

Fast Game (on *values*): among all 1-entries, choose one *uniformly at random* and flip it, along with all entries further to the right.

 \Rightarrow expected number of steps is $O(n^2)$

Lower bound???

The Slow Game

Slow Game: among *all* entries, choose one uniformly at random; if it is a 1-entry, flip it, along with all entries further to the right, otherwise, do nothing.

 \Rightarrow expected number of steps is $\Omega(n^2/\log n)$

Fast vs. Slow Game (I)

• flip of w at i (real or void): $w \to A^{(i)}w$, where

$$A^{(i)} = \begin{pmatrix} 1 & & \downarrow \text{ column } i \\ & \ddots & & \\ & & 1 & & \\ & & 0 & \leftarrow \text{ row } i \\ & & & 1 & 1 & \\ & & \vdots & \ddots & \\ & & & 1 & & 1 \end{pmatrix}$$

• flip sequence:
$$s = (i_1, i_2, \ldots)$$

- flip of w with (s,k): $w \to w^{(s,k)}$, where $w^{(s,k)} := A^{(s,k)}w,$ $A^{(s,k)} := A^{i_k} \cdots A^{i_2}A^{i_1}$
- $S = \text{set of flip sequences}, \quad V = GF(2)^n$

Fast vs. Slow Game (II)

• F(w), S(w): expected number of steps in fast and slow game, starting with w

•
$$F(n) := \frac{1}{2^n} \sum_{w \in \mathcal{V}} F(w)$$

 $F(n) = \sum_{k=1}^{\infty} \operatorname{prob}(w^{(s,k)} \neq w^{(s,k-1)})$
 $= \sum_{k=1}^{\infty} \frac{1}{n} \sum_{i=1}^{n} \operatorname{prob}(w^{(s,k-1)}_{i} = 1)$
 $= \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{\infty} \operatorname{prob}((A^{(s,k-1)}w)_i = 1)$
 $= \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{\infty} \operatorname{prob}((e_i^T A^{(s,k-1)})w = 1)$
 $= \frac{1}{2n} \sum_{i=1}^{n} \sum_{k=1}^{\infty} \operatorname{prob}(e_i^T A^{(s,k-1)})w = 1)$
 $= \frac{1}{2n} \sum_{i=1}^{n} S(Ae_{n-i+1})$

Random-Edge Performance

Theorem: There is a starting vertex of the *n*-dimensional Klee-Minty cube for which the simplex algorithm with the Random-Edge pivot rule requires an expected number of

 $\Omega(n^2/\log n)$

steps.

 \Rightarrow Klee-Minty cube "mildly" fools Random-Edge

Ignorant Pivot Rules (II)

Random-Facet: among the variables with positive coefficient in the *z*-row, choose the one whose index comes first in an initially chosen *random permutation* π of the indices.

- $\pi = (1, 2, \dots, n)$: "stupid" rule, $2^n 1$ steps
- $\pi = (n, n 1, ..., 1)$: "smart" rule, 1 step

Theorem: For every starting vertex of the *n*-dimensional Klee-Minty cube, the simplex algorithm with the Random-Facet pivot rule requires $O(n^2)$ steps, and this bound is tight.

Beyond Klee-Minty Cubes

• Klee-Minty cube:

vertex
$$v \rightarrow$$
 value $w = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} v.$

• Matoušek cube:

vertex $v \rightarrow$ value w = Av,

with $A \in GF(2)^{n \times n}$ being a lower-triangular, invertible matrix

Questions:

- Are Matoušek cubes combinatorial models of linear programs over (deformed) cubes?
- Does some Matoušek-cube fool Random-Facet? (It won't fool Random-Edge!)

Matoušek Cubes

Examples:

• The Matoušek cube $A = I_n$ is generated by the "unit cube" LP

maximize $\sum_{i=1}^{n} i \cdot x_i$ subject to

$$0 \leq x_i \leq 1, \quad i=1,\ldots,n$$

• The 3-dimensional Matoušek cubes

$$A_1 = \begin{pmatrix} 1 & & \\ 0 & 1 & \\ 1 & 1 & 1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 1 & & \\ 1 & 1 & \\ 0 & 1 & 1 \end{pmatrix}$$

do *not* come from any LP — they are generalized LPs

Matoušek Cubes — Results

Theorem: For a random starting vertex of a random *n*-dimensional Matoušek cube, the simplex algorithm with the Random-Facet pivot rule requires an expected number of $e^{\Omega(\sqrt{n})}$ steps, and this bound is tight.

⇒ Matoušek cubes fool Random-Facet

Theorem: For every starting vertex of every *LP-induced n*-dimensional Matoušek cube, the simplex algorithm with the Random-Facet pivot rule requires $O(n^2)$ steps, and this bound is tight.

 \Rightarrow still no LP known to fool Random-Facet

LP-induced Matoušek Cubes

Observation: If the n-dimensional Matoušek cube A is LP-induced, then A does not contain the "forbidden minors"

$$A_1 = \begin{pmatrix} 1 & & \\ 0 & 1 & \\ 1 & 1 & 1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 1 & & \\ 1 & 1 & \\ 0 & 1 & 1 \end{pmatrix}.$$

Lemma: Let $A \in GF(2)^{n \times n}$ be a matrix without forbidden minors. Then A^{-1} has at most one off-diagonal one-entry per row.

Corollary: Among the $2^{\binom{n}{2}}$ Matoušek cubes, at most $n! \approx 2^{n \log n}$ are LP-induced.

Examples:

Unit cube:

$$A = \begin{pmatrix} 1 & & & \\ 0 & 1 & & & \\ 0 & 0 & 1 & & \\ 0 & 0 & 0 & 1 & \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad A^{-1} = \begin{pmatrix} 1 & & & & \\ 0 & 1 & & & \\ 0 & 0 & 1 & & \\ 0 & 0 & 0 & 1 & \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Klee-Minty cube:

Random-Facet: the LP-Case

- Random permutation π of the coordinates, start vertex \boldsymbol{v}
- Among the coordinates i which are flippable $((Av)_i = 1)$, flip the first one in π ; repeat until 0 is reached
- k: last coordinate in π

v': first vertex where no coordinate different from k is flippable

v'': successor of v' (if existing)

•
$$Av'' = Av' + A_k = \mathbf{e}_k + A_k$$

•
$$v'' = A_k^{-1} + \mathbf{e}_k$$

- the possible v'' over all k with $v_k = 1$ are columns of $A^{-1} I_n$
- in the LP-induced case, for any j, $v_j'' = 1$ for at most one of the possible v''
- with j the second-to-last coordinate in π , v'' leads to the cheap case $v''_j = 0$ with high probability (over the random choice of k)

Beyond GF(2)?

- V = GF(q)ⁿ can be interpreted as the vertex set of a polytope which is the product of n simplices of dimension q − 1 each
- Any lower-triangular, invertible matrix $A \in GF(q)^{n \times n}$ induces an acyclic unique sink orientation on this polytope
- ... but relation between fast and slow game does not hold — flips are not linear functions anymore
- Performance of Random-Facet on such orientations? Lower bound of

 $e^{\Omega(\sqrt{n\log(nq)})}$

might hold for large \boldsymbol{q} and would be significant