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Budan-Fourier T heorem
and Descartes’s Law of Signs

Number of sign changes, V(a), a = ag, - -, ap,

in R\ {0}:

V(ag) =0
V(al,'H,ap)—l—l if aga1 <O
V(a) =
V(ai, -, ap) if apa1 >0
Extends to any finite sequence a of elements
in R by dropping the zeros in a.

P = Py, P1,...,P; a sequence of polynomials
in R[X], a be an element of RU {—o0, +0o0}.

Number of sign changes of P at a,

V(P;a) =V(Py(a),...,Pya)).

a and b in RU{—o0, 400},

V(P;a,b) =V(P;a) — V(P;b).



Der{P)=P, P, ... P®

n(P; (a,b]) number of roots of P in (a, b] counted
with multiplicities.

Theorem 1 (Budan-Fourier theorem) Let P

be a univariate polynomial of degree p in R[X].
Given a and b in RU {—o0, 40}

n(P; (a,b]) < V(Der(P),;a,b),

V(Der(P);a,b) — n(P; (a,b]) is even.



V(P) = V(aq,...,ap)

pos(P) number of positive real roots of P,
counted with multiplicity.

Theorem 2 (Descartes’ law of signs)

pos(P) < V(P),

V(P) — pos(P) is even.

Descartes’s particular case of Budan-Fourier
since

V(P) = V(Der(P);0,4+00).



Isolating Real Roots

P a polynomial of degree < p in R[X]. Char-
acterization of the roots of P in R will be per-
formed by finding intervals with rational end
points. Based on Descartes’s law of signs and
Bernstein basis.

Bernstein polynomials of degree p for c,d

py (X — c)P~(d — X)°
Bp,i(c,d) = (Z) (d—c)P !

for:=20,...,p.



V(b) number of sign changes in the list b of
coefficients of P in the Bernstein basis of ¢, d,
n(P; (c,d)) number of roots of P in (c,d) counted
with multiplicities. |

Proposition 5
V(b) > n(P; (c,d)),

V(b) — n(P; (c,d)) is even.
Proof. Follows from Descartes’'s law of signs.

The image of (¢,d) under the translation by
—c followed by the contraction of ratio d—-c is
(0,1). Theimage of (0,1) under the inversion
followed by the translation by —1 is (0, 4+o0).

By the same transformation
(P) (X —c)P7(d — X)*
1 (d—c)P

becomes into (f)X'& 0




b:bo,,bp

related to the shape of the polynomial P on
the interval ¢, d.

Control line of P on [c,d] : union of the
segments [M;, M;44] for i =0,...,p— 1, with

M, = (ic+ (p — i)d,bi> |

p
The graph of P goes through Mg and M, and
the line Mg, My (resp M,_1, Mp) is tangent to
the graph of P at Mg (resp. Mp).

Control polygon of P on |[c,d]:

convex hull of the points M; for: =1,...,p.



Proposition 6 The graph of P on [c,d] is con-
tained in the control polygon of P on |[c,d].

Proof: Any line L defined by Y = aX 4 b,
above all the points in the control polygon of
P on [c,d] is above the graph of P on [c,d].

Express the polynomial aX+b in the Bernstein
basis, use

X—c d-—X\?
1= ,
(d-c T d—c) ’

x=(2(3=0) +e(2)

using
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De Casteljau’s Algorithm

Input: b = bg,...,bg, coefficients of P in the
Berstein basis of ¢,d, and e € R.

Output: b = by, . .., by, coefficients of P in the
Berstein basis of c,e.

d—e e —_c

B =

d—c d—c'

Procedure: a =

b :=1b;, j=0,...,p.

Fori=1,...,p, for 5 =0,...,p—1, compute
b(%) b(z 1) + ’Bbj(z-l— 11)

Output

o =5, . 6§, b






Proposition 7 Let b, v and b’ be the lists of
coefficients of P in the Bernstein basis of ¢, d;
c,e;, ande,d. If c< e < d,then

V() + V(") < V().
Moreover V(b) — (V') — V(b") is even.

Proof: The proof of the proposition is based
on the following easy observations:

Inserting in a list a = ap,...,an a value z in
lai;ai1] if a4 > a; (resp. in [a;41,a;] if
a;+1 < a;) between a; and a;4; does not
modify the number of sign variations.

Removing from a list a = aq, ..., an With first
non-zero ag, k > 0, and last non-zero ay, k <

¢ <n, an element a;, i ¥ k,1 # £ decreases
the number of sign variation by an even
(possibly zero) natural number.



P gﬂug\ﬁa%ﬂ-’u

Let d > ¢, C((c,d))g be the closed disk with
center (¢,0) and radius d — ¢, and C((c,d))1
closed disk with center (d,0) and radius d — c.

Theorem 8 (Theorem of 2 circles) If P has
either no root or exactly one simple root in
(¢,d) and P has no complex root in C((c,d))oU
C((C, d))]_, then

P has one root in (c,d) if and only if

V() =1,

P has no root in (c,d) if and only if

V(b) = 0.
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P € R[X] is a polynomial of degree p with all
its real zeroes in (=2¢, 2%), squarefree. Con-
sider natural numbers k and ¢ such that 0 <
c < 2k and define

_2€+k+62€+1 _2£+k+(c+ 1)234—1
Ic,k = ( ~k 3 ok ).
It is clear that, for k big enough, the polyno-
mial P has at most one root in I.; and has
no other complex root in C(I.x)o U C(I.k)1-

b(P,c, k) coefficients of P on the Bernstein ba-
sis of I .

Using the Theorem of two circles, it is possible
to decide, for k£ big enough, whether P has
exactly one root in I, or has no root on I
by testing whether V(b(P, ¢, k)) is zero or one.



.l
Algorithm 9 (Real Root Isolation)

Input: 5(P,0,0).
Output: a list L(P) isolating the zeroes of P.

Procedure:

Initialization: Pos := {(b(P,0,0)} and L(P)
iIs the empty list.
While Pos is non-empty,
Remove b(P,c,k) from Pos.
If V(b(P,c,k)) =1 add I g, to L(P).
If V(b(P,c,k)) = 0 do nothing.
IfFV(b(P,c,k)) > 1, compute b(P,2c,k+1)

and b(P,2c+ 1,k+ 1) using De Castel-
jau’s Algorithm-and add them to Pos.
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