Computational Complexity of Stabbing, Visibility and Radii Problems

Thorsten Theobald

Technische Universität München

joint work with Peter Gritzmann

Interactions of lines with convex bodies in spaces of variable dimension:

Fix a class \mathcal{X} of convex bodies, e.g.,

 $\mathcal{P}_{\mathcal{H}}$: rational \mathcal{H} -polytopes $(P = \{x \in \mathbb{R}^n : Ax \leq b\})$

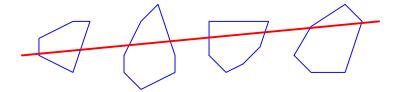
 $\mathcal{P}_{\mathcal{V}}$: rational \mathcal{V} -polytopes $(P = \mathsf{conv}\{v_1, \ldots, v_m\})$

 \mathcal{B} : 'rational' balls $(B=\{x\in\mathbb{R}^n: ||x-c||\leq r\}$ with $c\in\mathbb{Q}^n$, $r^2\in\mathbb{Q}$).

Input: $m, n \in \mathbb{N}$, bodies $C_1, \ldots, C_m \subset \mathbb{R}^n$ from the class \mathcal{X} .

LINE STABBING_{χ}:

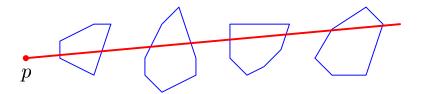
Does there exist a stabbing line for C_1, \ldots, C_m ?



Anchored Ray Stabbing_{χ}:

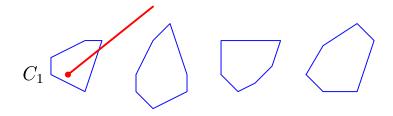
(additionally part of the input: $p \in \mathbb{Q}^n$)

Question: Does there exist a stabbing ray issuing in p for C_1, \ldots, C_m ?



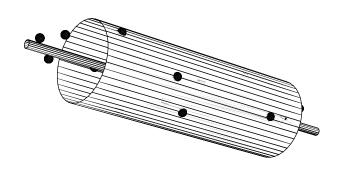
VISIBILITY χ :

Question: Is C_1 visible with respect to C_2, \ldots, C_m ?



Radii problems

Outer j-radius $R_j(C)$ of a convex body C: radius of a smallest enclosing j-dimensional sphere of an optimal orthogonal projection of C onto a j-dimensional space (j = n - 1): smallest enclosing cylinder



Upper Bounding j-Radius_{χ}:

Instance: Given $j,n\in\mathbb{N}$, a body $C\subset\mathbb{R}^n$ from the class \mathcal{X} , $\rho^2\in\mathbb{Q}^n$.

Question: Is $R_j(C)^2 \leq \rho^2$?

Radii problems ←→ stabbing problems:

There exists a stabbing line to the balls (c_1, r) , \ldots , (c_m, r)

$$\iff R_{n-1}(\mathsf{conv}\{c_1,\ldots,c_m\}) \le r.$$

Motivation and previous results

- Much recent work on approximation of radii:
 - Chan (J. Comp. Geom. Appl. 2002)
 - Varadarajan, Venkatesh, Zhang (FOCS 2002)
 - Ye, Zhang (Approx. Algorithms for Comb. Opt. 2003)
 - Varadarajan, Har-Peled (SoCG 2003)
 - In some cases, hardness of R_j was not proven
- Few complexity results on stabbing and visibility for variable dimension

Main existing complexity results:

• Megiddo (1990):

Stabbing for (non-)disjoint unit balls is NP-hard

- Gritzmann and Klee (1993):
 - extensive complexity classification on $R_j(P)$ for various $\mathcal X$ and general ℓ_p -norms
 - do not cover cases where j comes close to n

Goal: Determine frontiers of hardness

Outline of Results

	$\mathcal{X} = \mathcal{P}_{\mathcal{H}}$	$\mathcal{X} = \mathcal{P}_{\mathcal{V}}$	$\mathcal{X} = \mathcal{B}$
Line Stabbing $_{\mathcal{X}}$	ℕℙ-hard	ℕℙ-hard	\mathbb{NP} -hard
Anchored Line Stabbing $_{\mathcal{X}}$	\mathbb{NP} -compl.	\mathbb{NP} -compl.	Nℙ-hard
Anchored Ray Stabbing $_{\mathcal{X}}$	\mathbb{P}	\mathbb{P}	?
V isibility $_{\mathcal{X}}$	ℕℙ-hard	ℕℙ-hard	$\mathbb{NP} ext{-hard}$
Anchored $V_{ISIBILITY}_{\mathcal{X}}$	\mathbb{NP} -compl.	\mathbb{NP} -compl.	Nℙ-hard

For fixed dimension: The problems can be solved in polynomial time for all $\mathcal{X} \in \{\mathcal{P}_{\mathcal{H}}, \mathcal{P}_{\mathcal{V}}, \mathcal{B}\}.$

Radii: For each fixed $j\in\mathbb{N}$, upper bounding $R^2_{n-j}(P)$ for a \mathcal{V} -polytope:

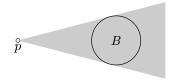
ℓ_1	ℓ_2	ℓ_∞
\mathbb{NP} -hard	$\mathbb{NP} ext{-hard}$?

Why is line stabbing hard at all?

Theorem. (a) For $\mathcal{X} \in \{\mathcal{P}_{\mathcal{H}}, \mathcal{P}_{\mathcal{V}}, \mathcal{B}\}$, Anchored Line Stabbing is \mathbb{NP} -hard.

(b) For $\mathcal{X} \in \{\mathcal{P}_{\mathcal{H}}, \mathcal{P}_{\mathcal{V}}\}$, Anchored Ray Stabbing can be solved in polynomial time.

Proof of (b): W.l.o.g. let the anchor p = 0.



The ray $[0,\infty)q$ $(q\in\mathbb{R}^n)$ is a stabbing ray for C_1,\ldots,C_m if and only if the convex feasibility problem

$$q \in \mathsf{pos}(C_i), \quad 1 \leq i \leq m \quad (\mathsf{positive hull})$$

has a solution.

For $\mathcal{P}_{\mathcal{H}}, \mathcal{P}_{\mathcal{V}} \sim$ linear programming.

Open problems

For balls: Convex quadratically constrained feasibility problem.

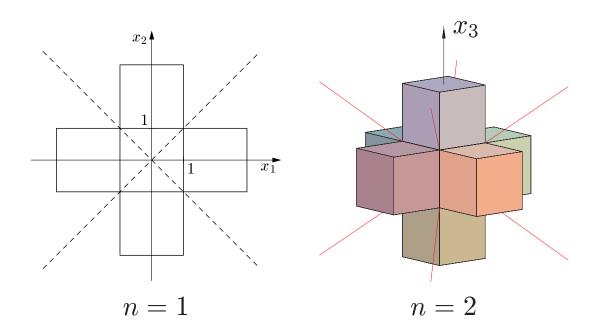
Anchored Ray Stabbing_{\mathcal{B}} $\in \mathbb{P}$?

"Slightly" more general: SDFP (semidefinite programming feasibility problem) $\in \mathbb{P}$? Open.

Theorem. Anchored Line Stabbing_{P_H} is NP-hard. The hardness persists if the polytopes are disjoint and restricted to be parallelotopes.

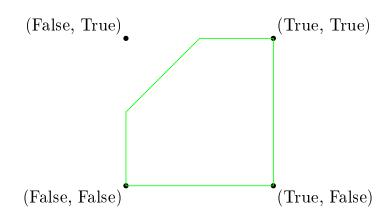
Reduction from 3-SAT: n variables, each clause:

$$C = y_i^{e_i} \vee y_j^{e_j} \vee y_k^{e_k}, \quad e_i, e_j, e_k \in \{-1, 1\}$$



With t(TRUE) := 1, t(FALSE) := -1:

assignment $(a_1, \dots, a_n)^T \in \{\text{True}, \text{False}\}^n$ $\longleftrightarrow \text{ line } \mathbb{R}(t(a_1), \dots, t(a_n), 1)^T \subset \mathbb{R}^{n+1}$ Representing the clauses: Consider the 2-clause $y_1 \vee y_2^{-1}$ for n=2. In the hyperplane $x_3=1$ in \mathbb{R}^3 :



In general, cut of an (n-3)-dimensional face from the cube

$$2e_{n+1} + [-1,1]^{n+1}.$$

For a clause $y_1^{-1} \vee y_2 \vee y_3^{-1}$:

$$(2e_{n+1} + [-1,1]^{n+1}) \cap \{x \in \mathbb{R}^n : x_1 - x_2 + x_3 \le 2\}.$$

Can also be achieved with parallelotopes.

Similarly for V-polytopes. The hardness persists if the V-polytopes are restricted to be cross polytopes.

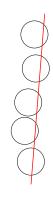
Open problems

For $\mathcal{X} \in \{\mathcal{P}_{\mathcal{H}}, \mathcal{P}_{\mathcal{V}}\}$:
Anchored Line Stabbing $_{\mathcal{X}} \in \mathbb{NP}$.

LINE STABBING $_{\mathcal{X}} \in \mathbb{NP}$ for $\mathcal{X} \in \{\mathcal{P}_{\mathcal{H}}, \mathcal{P}_{\mathcal{V}}, \mathcal{B}\}$?

For balls:

• In sufficiently generic situations, whenever there exists a stabbing line to the balls, then there exists a stabbing line tangent to 2n-2 of them.



- Sottile, Th. (Trans. Am. Math. Soc., 2002): For $n \geq 3$, 2n-2 general balls in \mathbb{R}^n have at most $3 \cdot 2^{n-1}$ common tangent lines. This bound is tight.
- \rightarrow algebraic problem of degree $3 \cdot 2^{n-1}$

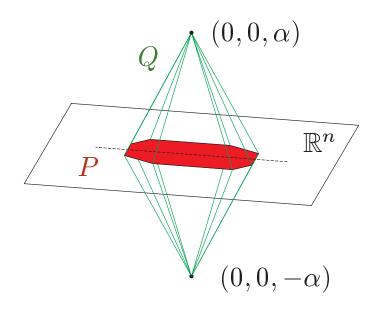
Can this be used to establish a witness of polynomial size that can be verified in polynomial time?

Also open: Line Stabbing for disjoint unit balls \mathbb{NP} -hard?

Radii results

Theorem. For each fixed $j \in \mathbb{N}$, upper bounding $R_{n-j}(P)^2$ for a symmetric \mathcal{V} -polytope P is \mathbb{NP} -hard both in ℓ_1 - and ℓ_2 -space.

Proof: Transfer hardness from R_{n-1} to R_{n-j} .



For P symmetric, $\varepsilon > 0$ and $\alpha \geq \sqrt{n}2^{4L}(1 + 2^{4L}/\varepsilon)$ (L: input bit length):

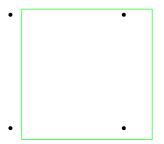
$$R_{n-1}(Q) \le R_{n-1}(P) \le R_{n-1}(Q) + \varepsilon$$

Can be generalized to R_{n-j} for any fixed j.

Open problems

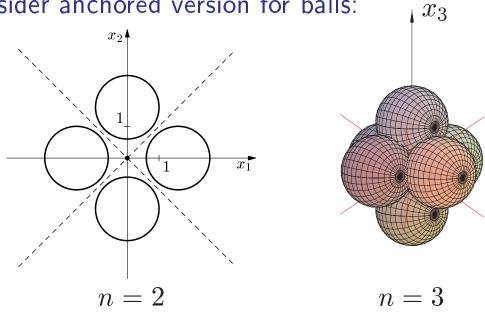
- ℓ_{∞}
 - → Stabbing for axis-aligned unit cubes

Essential difficulty: For n=2, not possible to cover exactly three points of $(\pm 1, \pm 1)$ by an axis-aligned square

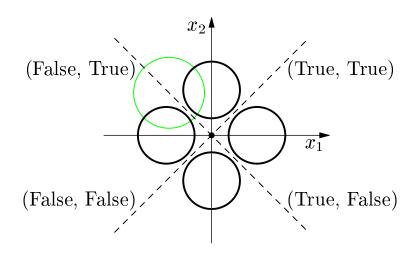


Visibility computations

Consider anchored version for balls:



Represent the 2-clause $y_1 \vee y_2^{-1}$ for n=2:



- ullet \mathbb{NP} -hard also for axis-parallel unit cubes !
- open for disjoint unit balls.