Output-Sensitive Construction of the Union of Triangles

Eti Ezra and Micha Sharir

Problem

Given a collection $T = \{\Delta_1, \ldots, \Delta_n\}$ of *n* triangles in the plane, such that there exists a subset $S \subseteq T$ (unknown to us), of $\xi \ll n$ triangles, such that $\bigcup_{\Lambda \in S} \Delta = \bigcup_{\Lambda \in T} \Delta$, construct efficiently the union of the triangles in T.

Output Sensitivity: Example I

Output Sensitivity: Example II

Only-Eirengles determine ine boundery-offine union

Constructing the arrangement of the triangles – too slow! O(n²)

Computing the union

Output-sensitive algorithm? unlikely to exist!

3SUM === HOLE-IN-UNION

The best known solutions to problems from the 3SUM-hard family require Θ(n²) time in the worst case.

Our Result

We show that when there exists a subset $S \subseteq T$ of $\xi << n$ triangles, such that $\bigcup_{\Delta \in S} \Delta = \bigcup_{\Delta \in T} \Delta$, the union can be constructed in subquadratic time. (for a reasonable range of ξ)

We use the Disjoint-Cover (DC) algorithm [Ezra, Halperin, Sharir 2002]

The DC algorithm – General idea

- Suppose we are given the set V⁺ of all vertices of the arrangement A(T), that are contained in the interior of the union.
- Run a greedy algorithm that inserts the triangles into the union by their weights.

The weight of a triangle $\Delta \in T$: The number of uncovered vertices inside the triangle.

Disjoint-Cover (DC) algorithm

- Suppose we have inserted $(\Delta_1, \dots, \Delta_i)$.
- ► For each remaining triangle Δ , we temporarily set S_{Δ} to be the set of all vertices of V⁺ in the interior of Δ that are not covered by $\bigcup_{i <=i} \Delta_i$.
- > Set $W(\Delta) = |S_{\Delta}|$ for each remaining triangle.
- Set A_{j+1} to be the triangle with the <u>maximum</u> weight.
- > Update the union to include Δ_{i+1} .
- Proceed until all triangles have been chosen.

Preprocessing stage : Example step1

 Δ_3

 $\Delta_{\mathbf{A}}$

 Δ_2

<u>Temporary initial</u> <u>weights</u>

 $W(\Delta_1)=7$

 $W(\Delta_2)=5$

 $W(\Delta_3)=3$

 $W(\Delta_4)=0$

DC Chooses Δ_1

Preprocessing stage: Example step2

Temporary current weights: $W(\Delta_2)=3$ $W(\Delta_3)=1$ $W(\Delta_4) = 0$ Δ_3 $\Delta_{\mathbf{A}}$ Δ_2 DC chooses Δ_2

Preprocessing stage: Example step3 **Temporary current** weights: $W(\Delta_3)=1$ $W(\Delta_4) = 0$ Δ_3 $\Delta_{\mathbf{A}}$

 Δ_2

DC chooses Δ_3

Preprocessing stage: Example step4 (final)

The residual cost of the DC algorithm

How many vertices at <u>positive-depth</u> are constructed by the DC algorithm?

Set Cover in Hypergraphs $H(V,E): V = V^{+}; E = T$

Since there are ξ triangles that cover V⁺, a greedy algorithm will find a cover of size $O(\xi \log n)$. I The residual cost of the DC algorithm is $O(\xi^2 \log^2 n)$.

The approximate DC algorithm

We replace V⁺ with a (small) random subset $R \subset V^+$.

 $|\mathbf{R}| = \mathbf{r} = \Omega(\xi t \log n)$

We resample R on every iteration of the DC algorithm.

Approximate weights

Approximate weight of Δ : number of uncovered vertices of *R* inside Δ .

The algorithm proceeds as above, using approximate weights to determine the insertion order.

Analysis: General idea

The approximate weights of the heavy triangles $(W(\Delta) > \frac{\kappa}{t\xi}, \kappa = |V^+|)$ reflect their actual weights.

The approximate DC algorithm chooses at the j-th iteration a triangle whose real weight does not differ significantly from the largest real weight at this step.

The residual cost of the approximate DC algorithm

Let $T = \{\Delta_1, \dots, \Delta_n\}$ be a given collection of n triangles in the plane, such that ξ of them determine the union of the triangles in T. Let $\kappa = |V^+|$, and $r = \Omega(\xi t \log n)$.

Then the residual cost of the approximate DC algorithm is $O(\xi^2 \log^2 t + \kappa/t)$, with high probability.

The first **q = O(ξ log t)** heavy triangles.

Implementation

Sampling R

Computing the insertion order

> The actual construction

a = O(*ξ* log t) is the number of the first triangles leaving < **x/t** uncovered Vertices.

Sampling R

B,

A

 $\Phi = \{ e_i \mid e_i \text{ is an edge of } \Delta \in T \}$

Obtain a compact representation of the intersection graph of Φ as ∪{A_i×B_i}_i, where Σ_i(|A_i| + |B_i|) = O(n^{4/3+ε}), ∀ ε > 0.

The construction takes $O(n^{4/3+\epsilon})$ time, for any $\epsilon > 0$.

Overall running time

> Preprocessing : $O(n^{4/3+\varepsilon})$

Drawing R: O(r log n) time

Sample at each of the first q = O(ξ log t) iterations of the DC algorithm.
Overall running time : O(n^{4/3+ε} + qr log n).

Computing the insertion order

Use (standard) range-searching machinery.

> Exclude all vertices of R in the interior of $\bigcup_{i < j} \Delta_i$: $O(j^{2/3+\varepsilon} r^{2/3+\varepsilon})$

> Perform a range-searching query on the remainder of R with $\Delta_{j, ...,} \Delta_n$: $O(n^{2/3+\epsilon} r^{2/3+\epsilon})$

> Repeating the procedure for q steps: $O(qn^{2/3+\varepsilon}r^{2/3+\varepsilon})$

The actual construction of the union

Divide the process into two stages:

Construct the union of all the first q ('heavy') triangles.

> Insert all the remaining triangles (covering ≤ κ/t positive-depth vertices).

U is the union of the first q triangles.

t1, t2, t3 are the remaining triangles.

Overall running time

Reporting the intersections between U and the remaining triangles

Sweep-line

 $O(q^2) + O(n^{2/3+\epsilon} q^{4/3+\epsilon} + \kappa/t) + O(q^2 + (\xi^2 + \kappa/t) \log n)$

Constructing

Overall running time of the algorithm

 $\begin{array}{l} O(n^{4/3+\varepsilon} + qr \log n + qn^{2/3+\varepsilon} r^{2/3+\varepsilon} + n^{2/3+\varepsilon} q^{4/3+\varepsilon} + q^2 + (\kappa/t+\xi^2)\log^2 n) \end{array}$

Choose $t = max\{\kappa^{5/3}/\xi n^{2/5}, 1\}$

 $O(n^{4/3+\varepsilon} + n^{2/5+\varepsilon} \kappa^{2/5+\varepsilon} \xi^{1+\varepsilon})$, for any $\varepsilon > 0$. The algorithm is subquadratic for $\xi \ll n^{4/5}$.

Extensions

Combinatorial part – unchanged. Modify the implementation.

Axis-parallel ellipses in R². Subquadratic, for ξ << n^{8/11}

Simplices in R³. Subcubic, for ξ << n

Concluding remarks

Do we have to redraw R at each iteration of the DC algorithm? Determining the insertion order is the bottleneck of the algorithm.

Thank You!

Perform the process for j = 1,2,4, ..., 2^h, ...
➤ Construct the union of the first *j* triangles: O(j²).

Count the number of intersections between U and the remaining triangles in O(n^{2/3+ε} j^{4/3+ε}) time, for any ε >0.

> If this number < κ/t *j* ← 2*j*, goto 1 > Construct these intersections explicitly, and trim the edges of the remaining triangles to their portions outside U: $O(n^{2/3+\varepsilon} q^{4/3+\varepsilon} + \kappa/t)$.

➤ Run a sweep-line procedure on the edges of U and the trimmed portions. If the number of intersections > k/t, j ← 2j, goto 1; else

the union is reported : $O((\kappa/t + \xi^2) \log n)$