Output-Sensitive Construction of the Union of Triangles

Eti Ezra and Micha Sharir

Problem

Given a collection T ={ $\Delta_1, \ldots, \Delta_n$ ∆ n} of *n* triangles in the plane, such that there exists a subset *S ⊆T* (unknown to us), of ξ << *n* triangles, such that ∪ ∆∈**S**∆ **⁼** ∪ ∆∈**T**∆ *,* construct efficiently the union of the triangles in T.

Output Sensitivity: Example I

Constructing the arrangement of the triangles – too slow! slow! *O(n 2)*

Computing the union

Output-sensitive algorithm? Output-sensitive algorithm? unlikely to exist! unlikely to exist!

3SUM === HOLE-IN-UNION 3SUM === HOLE-IN-UNION

The best known solutions to problems from the
3SUM-hard family require *Θ(n*²) time in the worst case.

Our Result

We show that when there exists a subset S ⊆T of ξ << *n* triangles, such that ∪ ∆∈**S**∆ **⁼** ∪ ∆∈**T** *the union can be constructed in the union can be constructed in* ∆ *, subquadratic subquadratic time.* (for a reasonable range of ξ)

We use the Disjoint-Cover (DC) algorithm We use the Disjoint-Cover (DC) algorithm [Ezra, Halperin, Sharir 2002]

The DC algorithm - General idea

- \blacktriangleright Suppose we are given the set V^+ of all vertices of the arrangement *A(T)*, that are contained in the interior of the union.
- \blacktriangleright Run a greedy algorithm that inserts the triangles into the union by their weights.

The weight of a triangle $\triangle \in T$: The number of uncovered vertices inside the triangle.

Disjoint-Cover (DC) algorithm

- \blacktriangleright Suppose we have inserted $(\Delta_1,\ldots,\Delta_i)$.
- \blacktriangleright For each remaining triangle ∆, we temporarily set S_Λ to be the set of all vertices of V⁺ in the interior of Δ that are not covered by $\bigcup_{j \leq n} \Delta_j$.
- \blacktriangleright \triangleright Set W(Δ) = $\lfloor S_{\Delta} \rfloor$ for each remaining triangle.
- \blacktriangleright Set Δ_{i+1} to be the triangle with the maximum weight.
- \blacktriangleright Update the union to include Δ_{j+1} .
- \blacktriangleright Proceed until all triangles have been chosen.

Preprocessing stage: Example step1

 Δ_{2}

 $\Delta_{\mathbf{3}}$

 $\Delta_{\bf 4}$

Temporary initial weights *W(*∆ *1)=7 W(*∆ *2)=5 W(*∆ *3)= 3 W(*∆ *4)=0*

∆**1**

 DC Chooses Δ_f

Preprocessing stage: Example step2

Preprocessing stage: Example step3 **Temporary current** weights: *W(*∆*3)=1 w*(Δ_4)=0 Δ ₃

 Δ ₂

∆**4**

DC chooses ∆₃

∆**1**

Preprocessing stage: Example step4 (final)

The residual cost of the DC algorithm

How many vertices at positive-depth are constructed by the DC algorithm? constructed by the DC algorithm?

Set Cover in Hypergraphs *H(V,E):* $V = V^+$; $E = T$

Since there are Since there are ξ *triangles that cover triangles that cover V+, a greedy algorithm will find a cover of size greedy algorithm will find a cover of size O(*ξ *logn).* The residual cost of the DC algorithm is O(ξ *2log2n) .*

The approximate DC algorithm

We replace V^+ with a (small) random subset R⊂ V+ .

$|R| = r = \Omega(\xi t \log n)$

We resample R on every iteration of the DC algorithm.

Approximate weights

Approximate weight of △: number of uncovered vertices of Rinside ∆.

The algorithm proceeds as above, using approximate weights to determine the insertion order.

Analysis: General idea

The approximate weights of the heavy triangles $(\mathsf{W}(\Delta) > \frac{\kappa}{\epsilon^2}$, $\kappa = |\mathsf{V}^+|)$ reflect their actual weights. ξ κ *t*

The approximate DC algorithm chooses at the j-th iteration a triangle whose real weight does not differ significantly from the largest real weight at this step.

The residual cost of the approximate DC algorithm **Theorem Theorem**

Let $T = {\Delta_1, \ldots, \Delta_n}$ be a given collection of n triangles in the plane, such that ξ of them determine the union of the triangles in T . Let $\kappa = |V^+|$, and $r = \Omega(\xi t \log n)$.

Then the residual cost of the approximate DC algorithm is $O(ξ² log²t + κ/t)$, with high probability.

> The first The first q = O(ξ log t) heavy triangles.

Implementation

$>$ Sampling R

\triangleright Computing the insertion order

q times

\triangleright The actual construction

q = O(ξ log t) is the number of the first number of the first triangles leaving **Example uncovered uncovered** vertices. vertices.

Sampling R

 Φ = { e_i | e_i is an edge of Δ ∈ T}

Obtain a compact representation of the intersection graph of Φ as ∪{Ai×Bi}i , where $\Sigma_i(|A_i| + |B_i|) = O(n^{4/3+\epsilon}), \forall \epsilon > 0.$ [Agarwal 91]

The construction takes $O(n^{4/3+\epsilon})$ time, for any $\varepsilon > 0$.

Drawing one vertex: one vertex: O(log n) O(log n)

Bi

Ai

Overall running time

Preprocessing : Preprocessing : *O(n4/3+*^ε *)*

> Drawing R: O(r log n) time

► Sample at each of the first *q* **= O(ξ log t)** iterations of the DC algorithm. Overall running time : *O(n^{4/3+ε} + qr log n) .*

Computing the insertion order

Use (standard) range-searching machinery.

 \blacktriangleright \rangle Exclude all vertices of R in the interior of $\cup_{i < j} \Delta_i$: *O(j2/3+*ε *r2/3+*^ε *)*

 \blacktriangleright Perform a range-searching query on the remainder of R with $\Delta_{\rm j,\ ...,\ \Delta_{\rm n}}$: *O(n2/3+*ε *r2/3+*^ε *)*

> Repeating the procedure for *q* steps: *O(qn2/3+*ε *r2/3+*^ε *)*

The actual construction of the union

Divide the process into two stages:

 \blacktriangleright > Construct the union of all the first q ('heavy' $\left(\begin{array}{c} \text{ } \text{ } \text{ } \text{ } \text{ } \end{array} \right)$ triangles.

 \blacktriangleright > Insert all the remaining triangles (covering ≤ κ/t positive-depth vertices).

U is the union of the first q triangles.

t1, t2, t3 are the remaining triangles.

Overall running time

Reporting the Reporting the intersections between U intersections between Uand the remaining and the remaining triangles triangles

Constructing Constructing U

> $O(q^2) + O(n^{2/3+\epsilon} q^{4/3+\epsilon} + k/t) +$ $O(q^2 + (\xi^2 + \kappa/t) \log n)$

> > **Sweep-line Sweep-line**

Overall running time of the algorithm

*O(n4/3+*ε *+ qr log n + log n + qn2/3+*ε *r2/3+*^ε *⁺ ⁿ2/3+*ε *q4/3+*ε *+ q2 + (*κ*/t+*ξ*2)log2n)*

*Choose t = max{ t = max{*κ*5/3/*ξ*n2/5, 1}*

*O(n4/3+*ε *+ n2/5 +*^ε ^κ*2/5 +*^ε ξ*1+*^ε *) ,* for any for any ^ε > 0. The algorithm is subquadratic for $\zeta \ll n^{4/5}$

Extensions

Combinatorial part – unchanged. Modify the implementation.

Axis-parallel ellipses in R^2 . Subquadratic, for ξ $<<$ n $^{8/11}$

Simplices in $\mathsf{R}^3.$ $Subcubic,$ for $\xi \ll n$

Concluding remarks

Do we have to redraw R at each iteration of the DC algorithm? Determining the insertion order is the bottleneck of the algorithm.

Thank You!

Perform the process h \triangleright Construct the union of the first *j* triangles: *O(j2).*

 \blacktriangleright Count the number of intersections between *U* and the remaining triangles in *O(n2/3+*ε *j4/3+* ^ε *)* time*, for any , for any* ^ε *>0.*

 $>$ If this number $< \kappa/t$ *j ← 2j* , goto 1

 \blacktriangleright Construct these intersections explicitly, and trim the edges of the remaining triangles to their portions outside *U*: *O(n2/3+*ε *q4/3+*^ε *+* κ/t*)* .

 \blacktriangleright Run a sweep-line procedure on the edges of *U* and the trimmed portions. If the number of intersections $> \kappa/t$, *j ← 2j ,* goto 1; else

the union is reported : the union is reported : *O((*κ */t +* ξ *2)logn)*