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Arrangement of lines

_— ~_

Arrangement of five lines.
No vertical line.
A monotone path of length three.

Length is number of turns plus one (i.e., the
number of edges of the path).



Background

A, = the maximum possible length of an x-
monotone polygonal line in an arrangement of
n lines (over all arrangements).

The problem to estimate A\, was posed in [Edels-
brunner and Guibas, 1989

An application of this problem can be found in
Yamamoto et. al., 1989

Related problem: the k-level (or its dual, the
k-set) problem in the plane. The k-level is the
closure of the set of points of the lines with the
property that there are exactly k lines below
them. Estimate the maximum length of the k-
level (over all arrangements).

Note: the k-level is a monotone path which
turns at each vertex on the path.



Previous results

Lower bounds
Sharir, 1987] Q(n3/2)
Matousek, 1991]  Q(n?/3)

Radoici¢ and Téth, 2001]  Q(n"/4)

Balogh et. al., 2003] Q(n2/CVe"), C' > 1.
Upper bounds
[Radoici¢ and Téth, 2001] N, < 5n?/12.

Related problem: arrangements of pseudolines.
[Matousek, 1991]  Q(n?/log n) lower bound.



Theorem 1 Let Li(n) be the mazimum length
of a monotone path in an n-line arrangement

whose lines have at most k distinct slopes.
Then

(iv) Ly(n) = ©(n*/?)
(v) Ls(n) = ©(n°?)
(vi) L(n) = O(n?)
(vii) L7(n) = O(n'/®)
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(viii) For any k > 4, Ly(n) < 25-k - n*m,
where Fy. 1s the k-th Fibonacci number.

The Fibonacci numbers are defined by the re-

currence: Fy =1, F1 =1, F;, = F,_1 + F,_o,
for ¢ > 2.



Fibonacci numbers

Fy = 5 Lg(n) = O(n2~YF1) = O(n%5)
Fs =8

Fe =13

Fr =21



One slope

Arrangement of parallel lines.
Ll(n) =1

Having more lines does not help!



Two slopes

/ /

n: even n: odd

Arrangement of lines with two slopes which ad-
mits a monotone path of length n.



Three slopes

A_ ]

YA 4

Arrangement of lines with three slopes which
admits a monotone path of length 2n —O(y/n).
It consists of: a bundle of m horizontal lines, m
bundles of m lines each, having slope of 1, and
m — 1 lines of negative slope (say —1).

n = m? + 2m — 1; monotone path of length
2m? +m — 1; m = 3 in this example.



Four slopes

Arrangement of lines with four slopes which ad-
mits a monotone path of length Q(n/?). It con-
sists of: m bundles of m horizontal lines each; m
bundles of m lines each at (say) 60°; m(m — 1)
near vertical parallel lines of positive slope, and
m — 1 near vertical parallel lines of negative
slope.

n = O(m?); monotone path of length Q(m?);
m = 3 in this example.
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Five slopes

Arrangement of lines with four slopes which ad-
mits a monotone path of length Q(n°3). It
consists of: m? bundles of m horizontal lines
each; m bundles of m? lines each (descending);
m?+m — 1 bundles of m — 1 lines each (ascend-
ing); m(m?—1) nearly vertical lines of negative
slope; m — 1 nearly vertical lines of positive
slope.

n = O(m?); monotone path of length Q(m?);
m = 3 in this example.
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Notation

p = monotone path

[(p) = the length of p

t(p) = the number of turns of p =l(p) — 1 .
slopes: 1,2,... k.

Consider Aj;.

Q (A1, p) = the set of cells of A; which are vis-
ited by p and in which p turns.

[. = the length of the portion of p inside a cell

C € Q(Abp)

p' = monotone shortcut path in A; (or Ay ).

Similar:

Consider Aj .

A cell of A;} is said to be wvisited by p if p
intersects its interior.

Q(Ayk,p) = the set of cells of A; ;. which are
visited by p and in which p turns.

[. = the length of the portion of p inside a cell

c € QA D).
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Proof of Theorem 1

By induction on k.

Arrangement A; of parallel (thick) lines of min-
imum slope; none of these can be revisited by
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Arrangement A; j, of lines of minimum and max-
imum slope; none of these can be revisited by

P.

(p) <1+ > (—1). (2

c€Q(Ay 1.p)
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Lemma 1 Let p' and p” be shortcut mono-
tone paths in the arrangements A; and A ,
respectively. Put ¢ = |Q(A1,p')| and ¢" =
|Q(A1r,0")|. Then

(i) l(p) <2n1+1 and ¢ < ni+1.
(17) L(p") < 2n1+2ni+1 and ¢" < ny+np+1.

Or:

t(p') < 2ny
t(p") < 2ny + 2ny

15



Lemma 2 Consider an arrangement A =
Ay of n lines having k distinct slopes (k >
4), and let p be a monotone path in A. Let
c be a convex cell c € Q(Ay,p), and let p,
be the portion of p which lies in the interior
of c. Assume that ; and {; are two lines of
minimum and maximum slope respectively,
which intersect p.. Then {; and {; intersect

in the interior of c.
\I

o

<

A cell c € Q(A;... k,p), and the portion p. of p
which lies in the interior of c.
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A cell ¢ € Q(Ayr4,p), and the portion p. of p
which lies in the interior of ¢. All the 3 x 4 =
12 vertices of the arrangement of the lines in
Lo U Lg are in the interior of c.



Lemma 3 Let m > 1 be the number of ver-
tices in a line arrangement A of n lines hav-
ing two distinct slopes, and let p be a mono-
tone path in A. Then I(p) < min(n, 2v/m +
1). Further on, consider an arrangement of
n lines having four distinct slopes, a con-
ver cell ¢ € Q(Aia,p), and the portion p.
of p which lies in the interior of c. Then
[(pe) < 2y/m.+1 < 3y/m., where m, is the
number of vertices of Azs in the interior of
C.

General idea: bound the length in terms of the
number of vertices.
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Proof of Lemma 3

First part:

n =ni+ ng, w.lo.g n; < ns.
n > 2n1 and m = ning > n%
t(p) < 2n; < n.

l(p) <2n1+1<n+1.

In fact, I(p) < n.

Also, n1 < 4/m, so

l(p) <2n;+1<2y/m+ 1.

Second part:
p. = contiguous portion of a monotone path in
Az 3 which lies in c.

let Ly (resp. L3) be the set lines of slope 2
(resp. 3) which intersect p.. Since ¢ € Q(Ay.4,p),
| Laf, [Ls| = 1.

By the convexity of ¢ and the ordering of the
slopes (Lemma 2 for k = 4), all the |Ls| - |Ls3|
vertices of the arrangement of the lines in Lo U
L3 are in the interior of ¢. Thus m. > |Ls|-|Ls|.
Assuming |Lo| < |Ls|, we have m. > |Ls|?.
Thus H(p.) < 2| Lo + 1 < 2/ + 1 < 3y
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Corollary 1 Ly(n) = O(n2_FL2) = 0(n%?).

Proof.
Consider A; 4 and use (2). By Lemma 1(41),

[(p") <2ny+2n4+1<2n+1, and

q = |Q(«41,4,p)\ <n+n+1<n+1.

(p)<2n+1+ > (l.—1)

c€Q(A1.4,p)
<om+1+2 }: /.
c€Q(A1,4,p)

By Jensen’s inequality

l(p) <2n+1+2q (")

<2n+1+%ﬁH—w/ (n?).
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Lemma 4 Let m > 1 be the number of ver-
tices in a line arrangement A of n lines hav-
ing three distinct slopes, and let p be a mono-
tone path in A. Then l(p) < min(2ni+2ns+
1,6m2/3). Further on, consider an arrange-
ment of n lines having five distinct slopes, a
convex cell ¢ € Q(A15,p), and the portion
pe of p which lies in the interior of c. Then
[(p.) < 6mz/3, where m, is the number of
vertices of Az 3.4 in the interior of c.

Obs. More slopes give a weaker bound.
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Lemma 5 Let k > 2. Let m > 1 be the
number of vertices in a line arrangement A
of n lines having k distinct slopes, and let p
be a monotone path in A. Then

1
l(p) < cp - m' "k,

where
k-1 1

ch=5k-3==T
and Fy. 1s the k-th Fibonacct number. Fur-
ther on, consider an arrangement of n lines
having k + 2 distinct slopes, a convexr cell
c € Q(Aii2,p), and the portion p. of p
which lies in the interior of c. Then

where m, is the number of vertices of Aa . k41
in the intertor of c.
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Corollary 2 For any k > 4,

__ i
Lin) <25-k- n "k-2 where Fy, is the k-th
Fibonacct number.

Proof.
Let m < (g) be the number of vertices of A,
and p be a monotone path in A.

l(p) < (2n+ 1)+

3o, 1 1 [n? 1‘%
5.3 22Fi.<k_2>.<n+1)Fk2.(?) .
=1
— < 143
25 <
1=2
1
L) —2 1 9 2

I(p) < 3n+25-(k—2)

2" I

1

<95-k-n Tio.

23



Corollary 3 There exists an absolute con-
stant C' > 0, so that if k < C'loglogn, then
Li(n) = o(n?).

Proof. F,, < 2F. O
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