Monotone paths in line arrangements with a small number of directions

Adrian Dumitrescu

University of Wisconsin-Milwaukee

Arrangement of lines

Arrangement of five lines.

No vertical line.

A monotone path of length three.

Length is number of turns plus one (i.e., the number of edges of the path).

Background

 λ_n = the maximum possible length of an xmonotone polygonal line in an arrangement of n lines (over all arrangements).

The problem to estimate λ_n was posed in [Edelsbrunner and Guibas, 1989]

An application of this problem can be found in [Yamamoto et. al., 1989]

Related problem: the k-level (or its dual, the k-set) problem in the plane. The k-level is the closure of the set of points of the lines with the property that there are exactly k lines below them. Estimate the maximum length of the k-level (over all arrangements).

Note: the k-level is a monotone path which turns at each vertex on the path.

Previous results

Lower bounds

[Sharir, 1987] $\Omega(n^{3/2})$

[Matoušek, 1991] $\Omega(n^{5/3})$

[Radoičić and Tóth, 2001] $\Omega(n^{7/4})$

[Balogh et. al., 2003] $\Omega(n^2/C^{\sqrt{\log n}}), C > 1.$

Upper bounds

[Radoičić and Tóth, 2001] $\lambda_n < 5n^2/12$.

Related problem: arrangements of pseudolines. [Matoušek, 1991] $\Omega(n^2/\log n)$ lower bound.

Theorem 1 Let $L_k(n)$ be the maximum length of a monotone path in an n-line arrangement whose lines have at most k distinct slopes. Then

(i)
$$L_1(n) = 1$$
.

(ii)
$$L_2(n) = n$$
.

(iii)
$$2n - O(\sqrt{n}) \le L_3(n) \le 2n + 1$$
.

(iv)
$$L_4(n) = \Theta(n^{3/2}).$$

(v)
$$L_5(n) = \Theta(n^{5/3}).$$

(vi)
$$L_6(n) = O(n^{9/5}).$$

(vii)
$$L_7(n) = O(n^{15/8}).$$

(viii) For any $k \geq 4$, $L_k(n) \leq 25 \cdot k \cdot n^{2-\frac{1}{F_{k-2}}}$, where F_k is the k-th Fibonacci number.

The Fibonacci numbers are defined by the recurrence: $F_0 = 1$, $F_1 = 1$, $F_i = F_{i-1} + F_{i-2}$, for $i \geq 2$.

Fibonacci numbers

$$F_0 = 1$$

$$F_1 = 1$$

$$F_2 = 2$$
; $L_4(n) = \Theta(n^{2-1/F_2}) = \Theta(n^{3/2})$.

$$F_3 = 3; L_5(n) = \Theta(n^{2-1/F_3}) = \Theta(n^{5/3}).$$

$$F_4 = 5; L_6(n) = O(n^{2-1/F_4}) = O(n^{9/5}).$$

$$F_5 = 8$$

$$F_6 = 13$$

$$F_7 = 21$$

$$F_8 = 34$$

:

One slope

Arrangement of parallel lines.

$$L_1(n) = 1$$

Having more lines does not help!

${\bf Two\ slopes}$

Arrangement of lines with two slopes which admits a monotone path of length n.

Three slopes

Arrangement of lines with three slopes which admits a monotone path of length $2n - O(\sqrt{n})$. It consists of: a bundle of m horizontal lines, m bundles of m lines each, having slope of 1, and m-1 lines of negative slope (say -1).

 $n = m^2 + 2m - 1$; monotone path of length $2m^2 + m - 1$; m = 3 in this example.

Four slopes

Arrangement of lines with four slopes which admits a monotone path of length $\Omega(n^{3/2})$. It consists of: m bundles of m horizontal lines each; m bundles of m lines each at (say) 60°; m(m-1) near vertical parallel lines of positive slope, and m-1 near vertical parallel lines of negative slope.

 $n = \Theta(m^2)$; monotone path of length $\Omega(m^3)$; m = 3 in this example.

Five slopes

Arrangement of lines with four slopes which admits a monotone path of length $\Omega(n^{5/3})$. It consists of: m^2 bundles of m horizontal lines each; m bundles of m^2 lines each (descending); m^2+m-1 bundles of m-1 lines each (ascending); $m(m^2-1)$ nearly vertical lines of negative slope; m-1 nearly vertical lines of positive slope.

 $n = \Theta(m^3)$; monotone path of length $\Omega(m^5)$; m = 3 in this example.

Notation

p = monotone path

l(p) =the length of p

t(p) = the number of turns of p = l(p) - 1.

slopes: $1, 2, \ldots, k$.

Consider \mathcal{A}_1 .

 $Q(\mathcal{A}_1, p)$ = the set of cells of \mathcal{A}_1 which are visited by p and in which p turns.

 l_c = the length of the portion of p inside a cell $c \in Q(\mathcal{A}_1, p)$.

 $p' = monotone \ shortcut \ path \ in \ \mathcal{A}_1 \ (or \ \mathcal{A}_{1,k}).$

Similar:

Consider $\mathcal{A}_{1,k}$.

A cell of $\mathcal{A}_{1,k}$ is said to be *visited* by p if p intersects its interior.

 $Q(\mathcal{A}_{1,k}, p)$ = the set of cells of $\mathcal{A}_{1,k}$ which are visited by p and in which p turns.

 l_c = the length of the portion of p inside a cell $c \in Q(\mathcal{A}_{1,k}, p)$.

Proof of Theorem 1

By induction on k.

Arrangement \mathcal{A}_1 of parallel (thick) lines of minimum slope; none of these can be revisited by p.

$$l(p) \le l(p') + \sum_{c \in Q(\mathcal{A}_1, p)} (l_c - 1). \tag{1}$$
$$t(p) \le t(p') + \sum_{c \in Q(\mathcal{A}_1, p)} t_c.$$

Arrangement $\mathcal{A}_{1,k}$ of lines of minimum and maximum slope; none of these can be revisited by p.

$$l(p) \le l(p') + \sum_{c \in Q(\mathcal{A}_{1,k},p)} (l_c - 1).$$

$$t(p) \le t(p') + \sum_{c \in Q(\mathcal{A}_{1,k},p)} t_c.$$
(2)

Lemma 1 Let p' and p'' be shortcut monotone paths in the arrangements A_1 and $A_{1,k}$, respectively. Put $q' = |Q(A_1, p')|$ and $q'' = |Q(A_{1,k}, p'')|$. Then

(i)
$$l(p') \le 2n_1 + 1$$
 and $q' \le n_1 + 1$.

(ii)
$$l(p'') \le 2n_1 + 2n_k + 1$$
 and $q'' \le n_1 + n_k + 1$.

Or:

$$t(p') \le 2n_1$$

$$t(p'') \le 2n_1 + 2n_k$$

Lemma 2 Consider an arrangement $A = A_{1,...,k}$ of n lines having k distinct slopes $(k \ge 4)$, and let p be a monotone path in A. Let c be a convex cell $c \in Q(A_{1,k}, p)$, and let p_c be the portion of p which lies in the interior of c. Assume that ℓ_i and ℓ_j are two lines of minimum and maximum slope respectively, which intersect p_c . Then ℓ_i and ℓ_j intersect in the interior of c.

A cell $c \in Q(A_{1,...,k}, p)$, and the portion p_c of p which lies in the interior of c.

A cell $c \in Q(\mathcal{A}_{1,4}, p)$, and the portion p_c of p which lies in the interior of c. All the $3 \times 4 = 12$ vertices of the arrangement of the lines in $L_2 \cup L_3$ are in the interior of c.

Lemma 3 Let $m \geq 1$ be the number of vertices in a line arrangement \mathcal{A} of n lines having two distinct slopes, and let p be a monotone path in \mathcal{A} . Then $l(p) \leq \min(n, 2\sqrt{m} + 1)$. Further on, consider an arrangement of n lines having four distinct slopes, a convex cell $c \in Q(\mathcal{A}_{1,4}, p)$, and the portion p_c of p which lies in the interior of c. Then $l(p_c) \leq 2\sqrt{m_c} + 1 \leq 3\sqrt{m_c}$, where m_c is the number of vertices of $\mathcal{A}_{2,3}$ in the interior of c.

General idea: bound the length in terms of the number of vertices.

Proof of Lemma 3

First part:

$$n = n_1 + n_2$$
, w.l.o.g. $n_1 \le n_2$.
 $n \ge 2n_1$ and $m = n_1n_2 \ge n_1^2$.
 $t(p) \le 2n_1 \le n$.
 $l(p) \le 2n_1 + 1 \le n + 1$.
In fact, $l(p) \le n$.
Also, $n_1 \le \sqrt{m}$, so $l(p) \le 2n_1 + 1 \le 2\sqrt{m} + 1$.

Second part:

 p_c = contiguous portion of a monotone path in $\mathcal{A}_{2,3}$ which lies in c.

let L_2 (resp. L_3) be the set lines of slope 2 (resp. 3) which intersect p_c . Since $c \in Q(\mathcal{A}_{1,4}, p)$, $|L_2|, |L_3| \geq 1$.

By the convexity of c and the ordering of the slopes (Lemma 2 for k=4), all the $|L_2| \cdot |L_3|$ vertices of the arrangement of the lines in $L_2 \cup L_3$ are in the interior of c. Thus $m_c \geq |L_2| \cdot |L_3|$. Assuming $|L_2| \leq |L_3|$, we have $m_c \geq |L_2|^2$. Thus $l(p_c) \leq 2|L_2| + 1 \leq 2\sqrt{m_c} + 1 \leq 3\sqrt{m_c}$.

Corollary 1 $L_4(n) = O(n^{2-\frac{1}{F_2}}) = O(n^{3/2}).$

Proof.

Consider $\mathcal{A}_{1,4}$ and use (2). By Lemma 1(ii),

$$l(p') \le 2n_1 + 2n_4 + 1 \le 2n + 1$$
, and

$$q = |Q(\mathcal{A}_{1,4}, p)| \le n_1 + n_4 + 1 \le n + 1.$$

$$l(p) \le 2n + 1 + \sum_{c \in Q(\mathcal{A}_{1,4},p)} (l_c - 1)$$

$$\le 2n + 1 + 2 \sum_{c \in Q(\mathcal{A}_{1,4},p)} \sqrt{m_c}.$$

By Jensen's inequality

$$l(p) \le 2n + 1 + 2q\sqrt{\frac{\binom{n}{2}}{q}}$$

$$\le 2n + 1 + 2\sqrt{n+1}\sqrt{\binom{n}{2}} = O(n^{3/2}).$$

Lemma 4 Let $m \ge 1$ be the number of vertices in a line arrangement \mathcal{A} of n lines having three distinct slopes, and let p be a monotone path in \mathcal{A} . Then $l(p) \le \min(2n_1 + 2n_3 + 1, 6m^{2/3})$. Further on, consider an arrangement of n lines having five distinct slopes, a convex cell $c \in Q(\mathcal{A}_{1,5}, p)$, and the portion p_c of p which lies in the interior of c. Then $l(p_c) \le 6m_c^{2/3}$, where m_c is the number of vertices of $\mathcal{A}_{2,3,4}$ in the interior of c.

Obs. More slopes give a weaker bound.

Lemma 5 Let $k \geq 2$. Let $m \geq 1$ be the number of vertices in a line arrangement \mathcal{A} of n lines having k distinct slopes, and let p be a monotone path in \mathcal{A} . Then

$$l(p) \le c_k \cdot m^{1 - \frac{1}{F_k}},$$

where

$$c_k = 5 \cdot k \cdot 3^{\sum_{i=2}^{k-1} \frac{1}{F_i}},$$

and F_k is the k-th Fibonacci number. Further on, consider an arrangement of n lines having k+2 distinct slopes, a convex cell $c \in Q(\mathcal{A}_{1,k+2},p)$, and the portion p_c of p which lies in the interior of c. Then

$$l(p_c) \le c_k \cdot m_c^{1 - \frac{1}{F_k}},$$

where m_c is the number of vertices of $A_{2,...,k+1}$ in the interior of c.

Corollary 2 For any $k \geq 4$,

 $L_k(n) \leq 25 \cdot k \cdot n^{2-\frac{1}{F_{k-2}}}$, where F_k is the k-th Fibonacci number.

Proof.

Let $m \leq \binom{n}{2}$ be the number of vertices of \mathcal{A} , and p be a monotone path in \mathcal{A} .

$$l(p) \le (2n+1) +$$

$$5 \cdot 3^{\sum_{i=2}^{\infty} \frac{1}{F_i}} \cdot (k-2) \cdot (n+1)^{\frac{1}{F_{k-2}}} \cdot \left(\frac{n^2}{2}\right)^{1-\frac{1}{F_{k-2}}}.$$

$$\sum_{i=2}^{\infty} \frac{1}{F_i} \le 1.43.$$

$$l(p) \le 3n + 25 \cdot (k-2) \cdot \frac{2^{\frac{1}{F_{k-2}}}}{2^{1 - \frac{1}{F_{k-2}}}} \cdot n^{\frac{1}{F_{k-2}}} \cdot n^{2 - \frac{2}{F_{k-2}}}$$

$$\le 25 \cdot k \cdot n^{2 - \frac{1}{F_{k-2}}}.$$

Corollary 3 There exists an absolute constant C > 0, so that if $k \le C \log \log n$, then $L_k(n) = o(n^2)$.

Proof. $F_k \leq 2^k$.