Capturing topological and geometric features for protein docking

Yusu Wang

Joint Work with

P. K. Agarwal, H. Edelsbrunner, J. Harer Duke University

Docking problem
 Partial matching

- Extract features
 - Extract feature points
 - More global features?

- Curvature
 - Too local
- Connolly function
 - Ratio of inside/outside perimeters
- Atomic density (Kuhn et al.)
 FADE, PADRE

Our goal: more than good feature pts

Height Function

- Height function $h : M \rightarrow R$
- Morse function
 - No degenerate critical pts
 - No two critical pts have same function value
- Critical points
 - Capture topological features
- Pairs of critical pts
 - Persistence Alg. (ELZ01)
 - Pairing decided by order of heights

X

General Manifold

- Height function + persistent alg.
 - Good at capturing/measuring vertical features
- All direction
 - Elevation on earth
- For general manifolds
 - No good choice for origin

Function invariant under rigid motion

Family of Height Functions

- Fix an arbitrary origin
- Given $u \in S^2$, define $h_u : M \to R$, as ■ $h_u(x) = \langle x, u \rangle$
- H: M x S² → R : a family of height functions
 H(x, u) = h_u(x)

■ Each x ∈ M critical in normal direction

Pair (x,y)

• Persistence $p(x) = p(y) = |h_u(x) - h_u(y)|$

- Define E : M → R as
 E(x) = p(x)
- Interested in max of E
 - Each x ∈ M captures feature in its normal direction
 - E(x) indicates size of feature

However, E not everywhere continuous

Surgery

Reason: singular tangency

- Inflexion pt (birth-death pt)
- Double tangency (interchange)

- Blame the manifold!
 - M' : apply surgery on M
 - Elevation function:
 - E : M' \rightarrow R

Pedal Surface

- Goal: help understand E
- Definition for $P : M \rightarrow R^3$
- Singularities
 - Inflexion pt ⇔ cusp
 - Double tangency ⇔ xing

- Critical pts for h_u ⇔ P ∩ l(u)
 P = P(M)
- Singularities of P along
 l(u)

Dictionary of Singularities

М	Height	Р
inflexion pt	birth-death pt	cusp
double tangency	interchange	xing
Jacobi pt	2 birth-death pts	dovetail pt
triple tangency	3 interchanges	triple pt
	bd-pt + interchange	cusp intersection
	2 birth-death pts	cusp-cusp crossing
	2 interchanges	xing-xing crossing
	bd-pt + interchange	cusp-xing crossing

Examples of *triple pt* and *cusp + intersection*

Dictionary of Singularities

Μ	Height	Р
inflexion pt	birth-death pt	cusp
double tangency	interchange	xing
Jacobi pt	2 birth-death pts	dovetail pt
triple tangency	3 interchanges	triple pt
	bd-pt + interchange	cusp intersection
	2 birth-death pts	cusp-cusp crossing
	2 interchanges	xing-xing crossing
	bd-pt + interchange	cusp-xing crossing

dovetail

An inflexion pt x cannot be a maximum

Dictionary of Singularities

М	Height	Р
inflexion pt	birth-death pt	cusp
double tangency	interchange	xing
Jacobi pt	2 birth-death pts	dovetail pt
triple tangency	3 interchanges	triple pt
	bd-pt + interchange	cusp intersection
	2 birth-death pts	cusp-cusp crossing
	2 interchanges	xing-xing crossing
	bd-pt + interchange	cusp-xing crossing

Classification of Max for E

- Four types of max x
- No singularity involved:
 - 1-legged : x regular, paired w/ regular pt
- Singularity involved:
 - 2-legged : x regular, paired w/ double pt
 - 3-legged : x regular, paired w/ triple pt
 - 4-legged : x double pt, paired w/ double pt

Characterization of Max

- Elevation function
- Relation w/ pedal function
- Classification of max of Elevation function
- Compute max for PL-case
- More efficient alg. to compute max
- Matching (docking)

