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Binary Space Partition

Size of the BSP:
The number of nodes
in the BSP tree.

for a set of (d-1)-dimensional objects in Rd



Binary Space Partition

Size of the BSP ≈
 ≈ The number of
fragments of input
objects.

for a set of (d-1)-dimensional objects in Rd



Auto-Partition

Cutting hyper-planes lie
along input objects.

for a set of (d-1)-dimensional objects in Rd



Binary Space Partition

The interior of every
cell intersects at most
one input object.

for a set of full-dimensional objects in Rd



• Paterson and Yao (1989): The size of the smallest BSP for n
disjoint segments in R2 is O(n log n).

• T. (2001): Best known lower bound Ω(n log n / loglog n).
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Binary Space Partition
• Paterson, Yao (1990): Axis-parallel segments in R2: Θ(n).
• T. (2002): Line segments with k different orientations in R2:

O(n log (k+1)).



• Paterson and Yao (1989): Segments in Rd, d>2:  Θ(n2).

Binary Space Partition

No super-quadratic lower bound is known for the size of any BSP.

—3-dimensions—



Binary Space Partition
—Orthogonality helps—

• Dumitrescu, Mitchell, Sharir (2001) & Berman, DasGupta,
Muthukrishnan (2001): Axis-parallel rectangles in R2:

                                                                 [7n/3-o(n), 3n-o(n)].
• Axis-parallel space filling rectangles: [2n/3-o(n), 2n].

• Paterson, Yao (1990): Axis-parallel segments in R2: Θ(n).
• D’Amore and  Franciosa (1992) & Dumitrescu et al. (2001):

Axis-parallel segments in R2: [2n-o(n), 2n-1]
• Arya (2002): size-height tradeoff — the size of a BSP tree of

height h is Ω(n log n/ log h).



Binary Space Partition
—Orthogonality in higher dimensions—

• Dumitrescu, Mitchell, Sharir (2001): Axis-parallel
k-dimensional rectangles in Rd: Θ(nd/(d-k)) if k < d/2,

    but O(nd/(d-k)) holds for every k ≤ d-1.

• P&Y(1990): Axis-parallel segments in Rd, d>2: Θ(nd/(d-1)).
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Space filling increases the complexity of the input by the
minimum convex partition of its complement.
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Binary Space Partition

Space filling increases the complexity of the input by the
minimum convex partition of its complement.

— Space filling helps—

The complement of 3⋅k2 prisms consists of  k3 small cubes.



Binary Space Partition
— Space filling helps—

Hershberger, Suri, and T. (2003):
Space-filling axis-parallel boxes in R3: Θ(n4/3).

Hershberger, Suri, and T. (2003):
Space-filling axis-parallel boxes in Rd: O(n(d+1)/3) and
Ω(n β(d)) where β(d) → (1+√5)/2.

Two phase algorithm:
• BSP for the vertices of all input boxes (by “round-robin”),
• linear BSP for objects whose vertices are on cell boundary.



• De Berg, de Groove, and Overmars (1997): Ratio of longest
and shortest segments is bounded by a constant in R2: Θ(n).

• De Berg (2000): Full dimensional fat objects in Rd: Θ(n).

Binary Space Partition
—Fatness helps—

• Agarwal, Grove, Murali, and Vitter (2000): Fat axis-parallel
rectangles in R3:  n2O(√log n).

Two phase algorithm:
• BSP for bounding box vertices of all fat objects,
• BSP for constant number of objects in every cell.

Generalizes to uncluttered scenes in Rd: Θ(n).



Binary Space Partition

T. (2003): Axis-parallel fat rectangles in R3: O(n log8 n)
and Ω(n log n) (for orthogonal BSP).

T. (2003): Axis-parallel fat (d-1)-dimensional rectangles
in Rd: O(n polylog(d) n).

—Fatness helps—



Given a box C in R3, we say that an
2-dimensional rectangle r is

Fat Rectangles

• Long, if no vertices of r are in int(C) [an extent contains extent of C].

• Bridge, if one extent of r contains that of C, and the other extent is in
the interior of the corresponding extent of C.

• Shelf, if one extent of r contains that of C, and the other extent
contains an endpoint of the corresponding extent of C.

• Free-cut, if two extents of r contains the corresponding extents of C.



The rectangle r∩C is not necessarily fat, but

Fat Rectangles

• If r is a free-cut, then we can partition C along r, without cutting any
other objects. � We can assume that there’s no free-cut.

• If r is a bridge, then the extent of r within C is at most α-times
shorter than the shortest of the other extent (semi-fatness).



 Clipped Segments

If every clipped segment is cut
 into O(logα n) pieces, then every
rectangle is cut into O(log2α n)
pieces.

It is not difficult to find an O(n) size BSP for n long rectangles.
This BSP can fracture the other fat rectangles into many pieces.

Lemma:

There is a BSP for n long fat rectangles such that every clipped axis-
parallel segment is cut into O(log3 n) pieces.



 BSP for rectangles in R3

Algorithm

• Divide the bounding box C into 8=23 subproblems along
medians of the vertices of the rectangles,

•  Overlay a BSP for long rectangles, while cutting every
clipped segment into O(log3 n) pieces,

• Process the subproblems recursively.



BSP for Shelves
All shelves along one side of C are parallel.

All shelves along one side of C can be represented in R2.
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BSP for Shelves

BSP algorithm ends in log n rounds.
Every axis-par. segment clipped to a rectangle is cut into O(log n) pieces.



 Overlay of BSPs

Apply the BSP for shelves independently on every side of a box C.

If we apply k BSPs on the same domain where each BSP cuts every
axis-parallel clipped segment λ times, then the overlay is a BSP
that cuts every axis-parallel clipped segment at most kλ times.



 BSP for long rectangles in R3

Bridges with a common direction behave like axis-par. segments in R2.



 Lower Bound Construction



 BSPs for lower-dim fat objects

(d-1)-dimensional fat axis-parallel hyper-rectangles in Rd have the
same BSP complexity as axis-parallel line segments in the plane —
apart from a poly-logarithmic factor.

Is it true for every k, 1< k < d-1, that n disjoint k-dimensional fat
axis-parallel hyper-rectangles in Rd have the same BSP size (apart
from a poly-logarithmic factor) as n axis-parallel line segments in
Rd-k+1, that is, Θ(n(d-k+1)/(d-k) polylog n).


