
Learning about Manifolds

from Samples

Uli Wagner

MSRI

Joint work with

Joachim Giesen

ETH Zürich
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Mystery Manifolds

Set-up

smooth compact manifold M ,

embedded in Rd, unknown to us

Input

finite set S⊂ M of sample points,

|S| =: n

Goals

Infer properties (topology, geometry)

of M by inspecting S

• with theoretical correctness guarantees

• under assumptions on S that are as weak as possible
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Ramifications

dim M = 2, d = 3: Surface Reconstruction

(E.g., data from scan of surface of 3-dimensional object)

Want piecewise linear surface that interpolates the sample points

and is homeomorphic and geometrically close (in Hausdorff

distance, normal vectors, etc.) to M .

General Intrinsic and Ambient Dimension

Numerous applications (e.g. in speech recognition), often

d � dimM .

Ideally, would like simplicial complex on S that is homeomorphic

and geometrically close to M (reconstruction).

Weaker goals include determining weaker topological invariants,

dimension, or t approximating geodesics (→ interpolation,

low-distortion embeddings)

Mathematical Foundations of Geometric Algorithms, October 13–17, 2003 3



Uli Wagner Learning about Manifolds from Samples

Focus of this talk

1. Quick Review of Delaunay-based Methods

2. Difficulties in High Dimensions

3. A Few Positive Results in High Dimensions

Ignore Many Important Issues

• non-smoothness and boundaries; more general “shapes”

• noise and undersampling

• alternative approaches such as non-linear interpolation or

approximation
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Restricted Delaunay Triangulation

The Delaunay triangulation of S restricted to M consists of all

Delaunay simplices σ whose dual Voronoi object Vσ intersects M .

Closed Ball Property?

For every k-dimensional

Delaunay simplex σ of S,

k ≤ dimM , the inter-

section Vσ ∩ M is either

empty or a closed ball of

dimension dimM − k.

Theorem [Edelsbrunner, Shah ’94]

If S has the closed ball property w.r.t. M , then the restricted

Delaunay triangulation is homeomorphic to M .
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Medial Axis and Local Feature Size

Medial Axis [Blum ’67]

A = A(M) := {x ∈ Rd : ∃ ≥ 2 closest points for x on M}

A

M

x

lfs(x)

Local Feature Size [Amenta, Bern, Eppstein ’98]

lfs(x) := dist(x, A), x ∈ M

Lipschitz Continuity Lemma

lfs(y) ≤ lfs(x) + ‖x − y‖, x, y ∈ M
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Sampling Conditions

ε-Sample [ABE ’98] Fix 0 < ε < 1.

S is an ε-sample :⇔ ∀x ∈ M ∃p ∈ S : ‖x − p‖ ≤ ε · lfs(x)

If dimM is unknown, we need stronger

assumptions to avoid sampling artifacts.

Tight ε-Sample [DGGZ ’02]

Fix another constant 0 < δ < ε.

An ε-sample S is an (ε, δ)-sample if

∀p 6= q ∈ S : ‖p − q‖ ≥ δ · lfs(p)
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Delaunay-Based Surface Reconstruction, 1

Crust [Amenta, Bern ’98],

Cocone [Amenta, Choi, Dey, Leekha ’00], [Funke, Ramos ’02]

Step 1. For every sample point p, compute a vector np that well

approximates the surface normal at p.

Step 2. Find a collection T of candidate Delaunay triangles such

that

1. each abc in T is almost orthogonal to each of na, nb, and nc

and hence locally almost parallel to M .

2. the circumcircle of each triangle in T is small, i.e. of size O(ε)

times the local feature size at its corners

3. T contains the restricted Delaunay triangulation.

Mathematical Foundations of Geometric Algorithms, October 13–17, 2003 8



Uli Wagner Learning about Manifolds from Samples

Delaunay-Based Surface Reconstruction, 2

Step 3. Clean-Up (delete triangles with “sharp” edges, restricted

Delaunay triangles will survive).

Lemma [AB ’98]

If S is an ε-sample from a surface M ⊂ R3, then the Closed Ball

Property is satisfied, and hence the restricted Delaunay

triangulation is homeomorphic to M .

Step 4. Manifold Extraction (uses that Delaunay triangles form a

geometric simplicial complex, that the candidate triangles can be

oriented consistently, and that the restricted Delaunay

triangulation is still present)
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Higher dimensions

Delaunay-based dimension detection (extension of Cocone) [Dey,

Giesen, Goswami, Zhao ’02]

Drawback: Complexity of Delaunay Triangulation

• A priori, complexity Θ(ndd/2e).

• There are examples of very uniform samples from the surface of

a cylinder in R3 for which the complexity of the Delaunay

triangulation is Ω(n3/2) [Erickson ’03]

• Even for very uniform samples, the complexity grows

exponentially with the codimension.

Mathematical Foundations of Geometric Algorithms, October 13–17, 2003 10



Uli Wagner Learning about Manifolds from Samples

Nasty Restricted Delaunay Slivers

For dimM ≥ 3, restricted Delaunay simplices can be transversal to

M , even in the case of uniform samples.

M

S3

S2

M ∩ R3

M ∩ S3
∩ R3

⇒ Closed Ball Property violated!
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Adaptive Neighborhood Graph

c-Neighborhoods

Fix a constant c > 1. For p ∈ S, let

δ(p) := min{‖p − q‖2 : q ∈ S \ p}

and

Nc(p) := {q ∈ S \ p : ‖p − q‖2 ≤ c · δ(p)}

p
δ(p)

Adaptive Neighborhood Graph

Gc(S)







vertices . . . points in S

edges . . . line segments pq s.t. q ∈ Nc(p) or p ∈ Nc(q)

Related Approaches

K nearest neigbors; all neighbors within a given radius r
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Locally Uniform Samples

Uc(p) := {x ∈ M : ‖p − x‖ ≤ c · δ(p)}, p ∈ S

Fix a “uniformity parameter” 1 < ρ < c/2. S is locally uniform if

∀p ∈ S∀x ∈ Uc(p)∃q ∈ S : ‖q − x‖ ≤ ρ · δ(p)

From now on, assume that S is a locally uniform ε-sample, for suit-

able (universal) choices of the constants and sufficiently small ε.

For instance, c = 5, ρ = 2, and ε < 1/10 will work.

Remark

For locally uniform samples, the complexity of the adaptive

neighborhood graph is 2O(dim M)n.

Mathematical Foundations of Geometric Algorithms, October 13–17, 2003 13
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Connected Components

S a locally uniform ε-sample from M

Theorem

p, q ∈ S lie in the same connected component of M

⇔

they are connected by a path in adaptive neighborhood graph G

Proof of “⇒” uses the fact that G contains all restricted Delaunay

edges and that these span the connected components of M .

Mathematical Foundations of Geometric Algorithms, October 13–17, 2003 14
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Dimension Detection

S locally uniform ε-sample from M

Small Angle Lemma

dist(q, TpM) ≤ O(ε2), ∀p ∈ S, q ∈ N(p)

Large Angle Lemma

max
q∈N(p)

dist(q, L) ≥ Ω(1), ∀p ∈ S, flat L 3 p, dimL < dimM

⇒ threshold β : min
l-dim flat L3p

max
q∈N(p)

dist(q, L)







≤ β, l ≥ dimM,

> 2β, l < dimM.

Determine dimM by computing 2-approximation of l-dimensional

flat through p that best fits N(p), l = 1, 2, 3, . . .

Can be done in time d2O(k7 log k)n [Har-Peled, Varadarajan ’02]
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Geodesic Distances

S locally uniform ε-sample from M , p, q ∈ S

distM (p, q) = length of a shortest geodesic connecting p and q

distG(p, q) = shortest-path distance in adaptive neighborhood

graph, each edge weighted with its euclidean length.

Theorem 1
distM (p, q) ≤ (1 + O(ε2)) · distG(p, q)

Theorem 2
distG(p, q) ≤ (1 + O(1/c)) · dM (p, q)

Note

Denser sample ⇒ better approximation to distM from below.

However, approximation quality to distM from above does not

increase with sampling density.
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