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• Instance:
– Volume dataset: (x, F(x))

• Task:
– For a user-specified error tolerance ε (in a given error 

metric), progressively simplify the volume such that we

– Preserve the topologies of all isosurfaces embedded in 
the volume 

– Control the geometric accuracy of the volume (and the 
isosurfaces) by ε

* Isosurface of q: C(q)  = {p | F(p) = q}



Original volume 
isovalue = 0.251

Simplified, no isosurface
topology guarantee; εεεε = 0.64

Simplified, with isosurface
topology guarantee; εεεε = 0.64



• Displaying isosurfaces is one of the most powerful 
visualization techniques for volume data

• For large datasets, multi-resolution methods are 
essential for efficient visualization

• During simplification to create multiple LODs, it is 
crucial to still capture the features of the original 
data

• One of the most critical features is the topologies of 
all isosurfaces

���� We want volume simplification that preserves all 
isosurface topologies



• Naïve approach:
– Use simplification method without isosurface topology 

guarantee, and adjust εεεε back and forth to find the right 
εεεε to use

– User visual inspection: No correctness guarantee; 
tedious & slow

– Try & error (thousands of critical isovalues to test):
Infeasible

���� We need simplification algorithm that
automatically guarantees the correctness for any 
value of εεεε



• [Staadt-Gross 98], [Trotts et al 98], [Trotts et al 99]
– Tetrahedral volume simplification by edge collapses             
– No topology guarantee on volume or isosurfaces

• [Dey et al 99], [Cignoni et al 00]
– Tetrahedral volume simplification by edge collapses             
– Preserve the topology of the volume itself (rather than

isosurface topologies)

• [Chopra-Meyer02]
– Simplifies tetrahedral volume by collapsing tetrahedral        

cells  (Fast)
– No topology guarantee on volume or isosurfaces



• [Gerstner-Pajarola 00]
- Simplifies regular grids                                       
- Preserves all isosurface topologies                                       
- Tetrahedralize regular grid                                                   
- Perform a reverse process of bisecting                       
tetrahedral cells                                               
- Only works for regular grids

• [Wood et al 02]
- Works on regular grid to simplify isosurface topology
- Completely different problem: polygonal model acquisition    
(only one isosurface and one connected component)                  
* We have an arbitrary no. of isosurfaces & components
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• The first volume simplification algorithm that 
preserves all isosurface topologies for rectilinear, 
curvilinear, and irregular grids (represented as 
tetrahedral meshes)

• Also preserves the geometry of the volume 
boundary, and avoids the fold-over problem

• Develop a theoretical foundation; provide a 
theoretical guarantee for the correctness

• Achieve a nice data-reduction rate
• Algorithm runs competitively fast



• Based on (half-)edge collapses, but disallow the 
collapses if they cause an isosurface topology change 

• Use Morse Theory [Banchoff 67]: critical points 
[Assume: scalar function is piece-wise linear]      
Key: Not enough to just preserve all critical points

• Two major classes of collapsibility tests:            
Check if collapsing an edge will                                
(a) join two regions of different isosurface topologies     
(b) remove or create critical points

• Two phases in the algorithm:                                    
(1) Segmentation: identify top-eq regions, for (a)
(2) Simplifcation



• Goal: identify top-eq
regions

• Use fully augmented 
contour tree 
(Ordinary contour 
tree [van Kreveld et al 
97] does not capture 
genus-change-only
events)

1. Classify all vertices as critical / non-critical [Chiang et al 03]    
* internal vertices     * boundary vertices (explicit method)
2. Compute contour tree using [Carr et al 00]



2’. Compute contour 
tree implicitly by a
labeling scheme           
* join tree: (b)               
* split tree: (c)
* merge two trees 
implicitly by labeling

3. Assign non-critical vertices & cells to top-eq regions
* non-critical vertex: label from fully aug. contour tree                  
* cell: assigned to each top-eq region of its non-critical vertices
-- pure/impure cell



• Simplify top-eq regions one by one, independently
• For each top-eq region, collapse edges from smallest to 

largest errors <= εεεε, subject to 6 types of collapsibility tests:
1. Critical edges: e has one or two critical endpoints

���� never collapse e (never put e to the priority queue Q)
2. Cross-region edges: endpoints of e are in 2 top-eq regions

���� never collapse e (by labels from Segmentation Phase)
3. Boundary-vertex edges: e = (v1, v2)                                       

* v1 & v2 are on boundary – never collapse e                       
* v1 is on boundary but v2 is not – only allow v1���� v2         
* Purposes:
(a) preserve boundary geometry of the volume                       
(b) make Type 4, 5 tests for boundary critical points easier



4. Critical-neighbor edges: e has a critical point c as a 
neighbor
���� disallow collapsing e if it makes c non-critical (see paper 
for details)

5. Criticality checking: trying to collapse e = (v1,v2) to v             
���� disallow the collapse if v or its non-critical neighbor 
becomes critical  (prevent creating a new critical pt)
* Naïve: collapse e to v & check criticality (full check)       
* Faster: Two-step checking or Easy-checking only

6. Fold-over checking:                                                  
���� disallow collapsing e if it produces a tetrahedral cell of
negative volume (check each cell affected by the collapse)



* Avoid Expensive Tests:                                        
For criticality checking, full checking  is slow                  
(e= (v1,v2) ���� v,  check to avoid creating a new critical pt)

- [Easy-checking Lemma] Let F(v1) < F(v2). If all neighbors
of v1 and v2 have scalar values < F(v1) or > F(v2), then v is 
non-critical & all non-critical neighbors stay non-critical

- Two-step checking:                                                  
(1) Easy checking, pass if succeeds, else (2)  full checking 
(Easy checking only: correct, faster, simplifying less)

* Avoid Repeated Unsuccessful Tests (while simplify more):
- If e fails in some test, then put e aside, and later put e back 

to Q when some other edge neighboring to e is collapsed 
that may affect the checking result of e



Original volume 
isovalue = 0.251 
38512 triangles

No-top; h, εεεε = 0.64; 7.74% 
cells left; 9944 tris

Our method; h, εεεε = 0.64;
62.05% cells left; 28986 tris

Error metrics: 
g: edge length 
s: scalar diff.  
h: half-half 



Original volume 
isovalue = 0.251 
38512 triangles

No-top; g, εεεε = 0.65; 21.36% 
cells left; 18085 tris

Our method; g, εεεε = 0.65;
63.73% cells left; 29276 tris



Original volume 
isovalue = 0.251 
38512 triangles

Our method; h, εεεε = infinity;
51.82% cells left; 27099 tris

Our method; g, εεεε = infinity;
52.15% cells left; 27078 tris



Our method; g, εεεε = 0.61;
85.48% cells left; 827 tris

Our method; s, εεεε = infinity;
82.01% cells left; 799 tris

Original; isovalue = 1.25; 
850 triangles

No-top; g, εεεε = 0.61;
23.64% cells left; 161 tris



• Datasets: # vertices: 20108—211680; # cells: 12936—1005675   
• Sun Blade 1000, dual 750MHz UltraSPARC III CPU 
• Typically: < 5% critical vertices; 5—25% pure cells;  
thousands of top-eq regions (different isosurface topologies)
• Segmentation phase is very fast (0.81—68.96 seconds)
• Nice data-reduction rate (% removed cells): 48—89% when 
εεεε = infinity

• When using two-step checking, easy checking accounts for   
> 99.5% of successful criticality checkings

• When using easy checking only and omitting full checking, 
simplification phase runs 2—3 times as fast (17.41—1013.3 
seconds for εεεε = infinity; 2.7 times as fast for the three longest 
runs), with almost the same data-reduction rate



• The first volume simplification algorithm that 
preserves all isosurface topologies for rectilinear, 
curvilinear, and irregular grids

• Also preserves the geometry of the volume 
boundary, and avoids the fold-over problem

• Theoretical foundation; nice data-reduction rate; 
overall algorithm runs competitively fast

Future Work: 
• Topological noises? 
• Multi-resolution volume hierarchy for run-time 

isosurface extraction
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