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f-Vector of Polytopes

P simplicial d-polytope:
fi = fi(P) ;== # of i-faces, 0 <i<d—1.

(fi).d__1 the f-vector of P, f_1:=1.

fo>d+1 f1 > dfo—(d—zl_])
for d > 1 ford >3

Lower Bound Theorem |[Barnette ‘70]



GLBT

Generalized Lower Bound Theorem
g1:=fo— (471 >0, d>1
02:=f1 — ({)fo+ (431) 20, d>3
g3:= 2 — (N1 + (Dfo— (1) >0, d>5

which 1s part of necessity part of g-Theorem,
conjectured by McMullen,
proved by [Stanley ‘80].



j-Facets

S a set of points in ]Rd, in general position.

An oriented simplex spanned by d points in
S 1s called j-facet, if there are exactly j
points from S on its positive side (i.e. on the
positive side of the hyperplane it spans).

O-facets = facets

0- and 2-facets
eg =6,e) =9




Number of j-Facets

For j € 7,
e; = ¢j(S) = # of j-facets of S,

E; =E(S) = Zigj ei (<j)-facets.

Note for n := |S|

eo(S) = Eo(S) = fg_1(conv §)

¢ = en—d—

n

Bounds on e; and Ej:

[Lovasz‘71|, [Erdés,L.,Simmons,Straus‘73|,. . .
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Entering j-Facets

A directed line £ enters a j-facet, if it in-
tersects the j-facet in its relative interior, di-
rected from its positive to its negative side.

hy = hy(S,{) := # of j-facets entered by .
(hj-)“_d the h-vector of S and (.

j=0
n=/,d=2
h=(1,2,3,3,2,1)

How many j-facets can be entered by a line?

At most (jz‘if) :



Entering and Leaving

A directed line { leaves a j-facet, if it in-
tersects the j-facet in its relative interior, di-
rected from its negative to its positive side.
(...enters the ‘opposite’ (n—j—d)-facet ...)

For a point x on { (SU{x} in gen. pos.)

gj(x) = gj(x,5,¢) ==
# of j-facets entered by £ up to x
— 4 of j-facets left by { up to x




You May Come Either Way

Claim. g;(x) = g;(x,S,{) does not depend
on the line ¢.

For a proof, let sy (x) be the number of Q C S
with |Q| = (k+d+ 1) and x € conv Q.

As x enters a j-facet, it loses () ) such sets

and gains (n]:ff ') such sets. Therefore, the
vector (si(x))yx is determined by the vector
(gj(x)); . ..and vice versa.

/ Entering a 5-facet:
\ We lose (g) sets of
size 4, and we gain

§ (%) such sets.

= every line enters the same number of j-facets as it leaves).
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Areas of Equal g;-Value

Jo 5 go(x) =1 iff x € conv S

g;'s measure interiorisity of a point relative to S7
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First Enter, then Leave

In—j—a(x) = —g;(x), so values for j < “%d

determine the whole vector.

Theorem. g;(x) > 0 for j < n%d

We can never leave more j-facets than
we have entered.

The {enter, leave}-sequence is
a well-formed string of parenthesis.

Elquivalent to GLB'T for polytopes via Gale Transform
[Carl Lee ‘91, W. ‘01]
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Example

Entered minus left 3-facets.
The darker, the larger g3(x) is.
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Moving Towards the Center Point_
Proof of gj(x) > 0 for j < dLH_ 1.

Choose a center point c, 1.e. a point so that
every hyperplane containing ¢ has at most
Cfl—j:] points on either side. c i1s on the negative
side of every j-facet with

dn : n
n-j-l>gn @ i<gr— b

Now choose a line { D {c,x} directed from x
to c. Moving on { towards c, we never leave a
j-facet W.ith j < dLJr] —1, 50 g;(x, S,¢) cannot
be negative.

If c is on or on the positive side of a j-facet, then there is a hyperplane through c¢ that has at least

. _ . . . . . d
(n—j—d)+(d—1) =n—j—1 points on one side. Because of the center point property, n—j—1 < 5.
Soifn—j—1> dd—]r‘], ¢ has to be on the negative side of any j-facet.
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In the Plane
Proof of gj(x) >0 forj <% —11in RZ.

(Assume n even.) Choose a line £ > x that
has the same number of points in S on either
side. Project (from x) the points in S on two
lines parallel to £. In this way the si(x)’s
don’t change, and so the g;(x)’s don’t.

For a, b,
b@ a% a+b=j<5—1,
| match the j-facet en-
| /GO tered with a points to
S " the left and b points
to the right, with the
9 {z@\\@ j-facet left, with b
| b{z points to the left and
| a points to the right.
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An Application

Upper Bound for E; in R3. [(W. ‘01]

For every set S of n points in R3 and all
0<j<n—-4

Ej(S)+2) gi(p,S\{p}) = Ej(C})
PES

C3, n points on moment curve (conv. pos.).

Since g; > 0 for j < (n_;)_s, it follows that

E; < E;(Cq) for all j < M2

‘E; < Ej(C,)’ is equivalent to the GLBT for d-polytopes
with at most d + 4 vertices.
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Further Implications

Every set of 2n 4+ 1 points in R3 has at least
n? halving triangles (which is tight).

n red and n blue points in the plane always
allow at least n balanced lines (lines
through two points that have on either side
the same number of red and blue points.

conj. by G. Baloglou
[Pach,Pinchasi ‘01]

[Sharir,W. ‘03|
(for conn. to GLBT)
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Questions

Simple(r) proof of GLBT,
le. gj(x) >0 for d > 3.

Generalized Upper Bound Theorem in Rd?

Is it true that E; < E;(CY) for all d and all
j < n_g_] ? known for d < 3;

known to be true asymptotically
[Clarkson,Shor‘89]

More generally: Exact linear inequalities for

n—d
the e-vector (e;) =0 -

Known: ey (UBT); bounds above; FE; > 3(j;2) in R? for
j < n/3 — 1 with implications to K;, crossing number |[Lovész,
Vesztergombi, Wagner,W.‘03]
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