MSRI Discrete and Computational Geometry Workshop on Combinatorial and Discrete Geometry Berkeley, November 17, 2003

The Generalized Lower Bound Theorem for Polytopes j-Facets of Finite Point Sets

Emo Welzl, ETH Zürich

Lower Bound Theorem and GLBT
Entering and Leaving j-Facets
Applications to a Generalized UBT
Open Questions

f-Vector of Polytopes\_

 $\mathcal{P}$  simplicial d-polytope:

$$f_i = f_i(\mathcal{P}) := \# \text{ of i-faces, } 0 \le i \le d-1.$$

$$(f_i)_{i=-1}^{d-1}$$
, the f-vector of  $\mathcal{P}$ ,  $f_{-1} := 1$ .



$$f_0 \ge d + 1$$
 for  $d \ge 1$ 

$$f_1 \ge d f_0 - {d+1 \choose 2}$$
  
for  $d > 3$ 

Lower Bound Theorem [Barnette '70]

**GLBT** 

#### Generalized Lower Bound Theorem

$$g_1 := f_0 - {d+1 \choose 1} \ge 0,$$
  $d \ge 1$ 

$$g_2 := f_1 - {d \choose 1} f_0 + {d+1 \choose 2} \ge 0,$$
  $d \ge 3$ 

$$g_3 := f_2 - {d-1 \choose 1} f_1 + {d \choose 2} f_0 - {d+1 \choose 3} \ge 0, d \ge 5$$

•

which is part of necessity part of g-Theorem, conjectured by McMullen,

proved by [Stanley '80].

j-Facets.

S a set of points in  $\mathbb{R}^d$ , in general position.

An oriented simplex spanned by d points in S is called j-facet, if there are exactly j points from S on its positive side (i.e. on the positive side of the hyperplane it spans).



0-facets  $\equiv$  facets

0- and 2-facets  $e_0 = 6, e_2 = 9$ 

### Number of j-Facets\_

For 
$$j \in \mathbb{Z}$$
, 
$$e_j = e_j(S) := \# \text{ of } j\text{-facets of } S,$$
 
$$E_j = E_j(S) := \sum_{i < j} e_i \quad (\leq j)\text{-}facets.$$

Note for n := |S|

$$e_0(S) = E_0(S) = f_{d-1}(\operatorname{conv} S)$$

$$e_j = e_{n-d-j}$$

$$E_{n-d} = 2\binom{n}{d}$$

Bounds on  $e_i$  and  $E_i$ :

[Lovász'71], [Erdős,L.,Simmons,Straus'73],...

### Entering j-Facets

A directed line  $\ell$  enters a j-facet, if it intersects the j-facet in its relative interior, directed from its positive to its negative side.

 $h_j = h_j(S, \ell) := \# \text{ of } j\text{-facets entered by } \ell.$   $(h_j)_{j=0}^{n-d}$ , the h-vector of S and  $\ell.$ 



How many j-facets can be entered by a line? At most  $\binom{j+d-1}{d-1}$ .

### Entering and Leaving

A directed line  $\ell$  leaves a j-facet, if it intersects the j-facet in its relative interior, directed from its negative to its positive side. (...enters the 'opposite' (n-j-d)-facet ...) For a point x on  $\ell$   $(S \cup \{x\} \text{ in gen. pos.})$ 

$$g_j(x) = g_j(x, S, \ell) :=$$
# of j-facets entered by  $\ell$  up to  $x$ 
-# of j-facets left by  $\ell$  up to  $x$ 



## You May Come Either Way\_

Claim.  $g_j(x) = g_j(x, S, \ell)$  does not depend on the line  $\ell$ .

For a proof, let  $s_k(x)$  be the number of  $Q \subseteq S$  with |Q| = (k+d+1) and  $x \in \text{conv } Q$ .

As x enters a j-facet, it loses  $\binom{j}{k+1}$  such sets and gains  $\binom{n-d-j}{k+1}$  such sets. Therefore, the vector  $(s_k(x))_k$  is determined by the vector  $(g_j(x))_j \dots$  and vice versa.



Entering a 5-facet:

We lose  $\binom{5}{2}$  sets of size 4, and we gain  $\binom{2}{2}$  such sets.

 $\Rightarrow$  every line enters the same number of j-facets as it leaves).

# Areas of Equal $g_j$ -Value\_



 $g_0(x) = 1 \text{ iff } x \in \text{conv } S$ 



 $g_j$ 's measure interiorisity of a point relative to S?

First Enter, then Leave\_\_\_\_\_

 $g_{n-j-d}(x) = -g_j(x)$ , so values for  $j \le \frac{n-d}{2}$  determine the whole vector.

Theorem.  $g_j(x) \ge 0$  for  $j \le \frac{n-d}{2}$ .

We can never leave more j-facets than we have entered.

The {enter, leave}-sequence is a well-formed string of parenthesis.

Equivalent to GLBT for polytopes via Gale Transform [Carl Lee '91, W. '01]



Entered minus left 3-facets. The darker, the larger  $g_3(x)$  is.

## Moving Towards the Center Point\_\_\_\_\_

Proof of 
$$g_j(x) \ge 0$$
 for  $j < \frac{n}{d+1} - 1$ .

Choose a center point c, i.e. a point so that every hyperplane containing c has at most  $\frac{dn}{d+1}$  points on either side. c is on the negative side of every j-facet with

$$n-j-1 > \frac{dn}{d+1} \iff j < \frac{n}{d+1}-1.$$

Now choose a line  $\ell \supseteq \{c, x\}$  directed from x to c. Moving on  $\ell$  towards c, we never leave a j-facet with  $j < \frac{n}{d+1} - 1$ , so  $g_j(x, S, \ell)$  cannot be negative.

If c is on or on the positive side of a j-facet, then there is a hyperplane through c that has at least (n-j-d)+(d-1)=n-j-1 points on one side. Because of the center point property,  $n-j-1 \le \frac{dn}{d+1}$ . So if  $n-j-1 > \frac{dn}{d+1}$ , c has to be on the negative side of any j-facet.

In the Plane

Proof of  $g_j(x) \ge 0$  for  $j \le \frac{n}{2} - 1$  in  $\mathbb{R}^2$ .

(Assume n even.) Choose a line  $\ell \ni x$  that has the same number of points in S on either side. Project (from x) the points in S on two lines parallel to  $\ell$ . In this way the  $s_k(x)$ 's don't change, and so the  $g_i(x)$ 's don't.



For a, b,  $a + b =: j \le \frac{n}{2} - 1$ , match the j-facet entered with a points to the left and b points to the right, with the j-facet left, with b points to the left and a points to the right.

## An Application\_

Upper Bound for  $E_j$  in  $\mathbb{R}^3$ .

[W. '01]

For every set S of n points in  $\mathbb{R}^3$  and all  $0 \le j \le n-4$ 

$$E_{j}(S) + 2\sum_{p \in S} g_{j}(p, S \setminus \{p\}) = E_{j}(C_{n}^{3})$$

 $C_n^3$ , n points on moment curve (conv. pos.).

Since  $g_j \ge 0$  for  $j \le \frac{(n-1)-3}{2}$ , it follows that  $E_j \le E_j(C_n)$  for all  $j \le \frac{n-4}{2}$ .

' $E_j \leq E_j(C_n)$ ' is equivalent to the GLBT for d-polytopes with at most d+4 vertices.

## Further Implications

Every set of 2n + 1 points in  $\mathbb{R}^3$  has at least  $n^2$  halving triangles (which is tight).

n red and n blue points in the plane always allow at least n balanced lines (lines through two points that have on either side the same number of red and blue points.



Questions\_

Simple(r) proof of GLBT, i.e.  $g_j(x) \ge 0$  for  $d \ge 3$ .

Generalized Upper Bound Theorem in  $R^d$ ? Is it true that  $E_j \leq E_j(C_n^d)$  for all d and all  $j \leq \frac{n-d-1}{2}$ ? known for  $d \leq 3$ ; known to be true asymptotically [Clarkson,Shor'89]

More generally: Exact linear inequalities for the e-vector  $(e_j)_{j=0}^{n-d}$ .

Known:  $e_0$  (UBT); bounds above;  $E_j \geq 3\binom{j+2}{2}$  in  $\mathbb{R}^2$  for  $j \leq n/3-1$  with implications to  $K_n$  crossing number [Lovász, Vesztergombi, Wagner, W.'03]