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The Frobenius Problem

Let aq1,...,a4 be positive integers such that
gcd(aq,...,aq) = 1.

Let S = {\1a1+ -+ Agag|\i € Z>o0}, the semi-
group generated by the a;'s.

Example: a1 = 3,a> = 7. Then

S=14{0,3,6,7,9,10,12,13,14,...}.
All sufficiently large integers are in S.

Questions:
1. What is the largest integer not in S§7
2. How many positive integers are not in S7

Algorithmic slant: can we answers these ques-
tions “quickly’” 7
(Question 1 previously solved by Kannan)



Our Approach: Generating Functions

Define

f(S ) =) z
a€S
In our example, f(S;z) = 14+23+25+2"+--- .
Want to find (quickly) a simple formula for

f(S; x).

To answer question 2 (how many positive in-
tegers are not in S), specialize

—— ~ f(5:2)

at r = 1.

x =1 is a pole of the fractions.
Idea: look at points near 1.



In our example, we could write

f(S;zx) =2+ 2°4+ 2" +2°4+2104 1561256,
but this is too long, in general.
When d = 2, can get
1 — 2102
f(S;z) = - wal)x(l ~ )
When d = 3, can get
£(S: ) = +6 monomials (Denham)

(1 —z21)(1 — z32)(1 — za3)’

When d = 4, could have

Vvt monomials
(S x) = Y
(1 —291)(1 — 222)(1 — 223)(1 — z%4)
where t = min{aq,ap,a3,a4}. (Székely, Wormald).

Vvt is too many. We want something like logt
or (logt)10.



“Quick” Algorithms

We want an algorithm that inputs aq1,ao,...,ay
and outputs f(S;x).

The input size is the number of bits needed to
encode the input for the algorithm.

Here, input size is approximately

(1 +1logs(ar)) + -4+ (1 + 10gs(ay))

d
=d—+ > logx(a;).
1=1

An algorithm is polynomial time if there is a
polynomial p such that the algorithm runs in
at most p(input size) steps.



General Problem

Fix d.
Let ¢1,...,¢cn € Z% and bq,...,b, € Z be given.
Define a rational polyhedron P by

= {x € Rd’ ci,x) < by, Vi}.

Input size of P is approximately

nd + ) _10gz|c;i| + D 1ogo|b;|.

Let T be a linear transformation R¢ — R*, such
that T(Z%) c Z*.

Input size of T = (t;;) is approximately

dk + Z IOQQItz’jl-

For S € Z@ define
f(S;x) = > itz =) x5

8:(81,...,3d)65 seSs



Corollary 1 For fixed d, there is a constant
s = s(d) and a polynomial time algorithm which,

given aq,...,ayq, writes f(S;z) in the form
S 2) Pi
, L) = gy )
7 ( Z%:[ “(1 — z%1) .- (1 — 2%s)

where «; € Q and p;, qij € 2.

In particular, the number of terms is bounded
by a polynomial in the input size.

We have s =~ d¢.



Theorem 1 (Barvinok) For fixed d, there ex-
ists a polynomial time algorithm which, given a
rational polyhedron P, computes f(S; x), where
S=PnNnZ% in the form

>+

el

Xpi
(]_ — XQz’l) c o (]_ — X%’d)’

where Di ;5 € 74,

Example: P = {z[0 <z < N}. Then

N+1
f(S;x)=14+z4+---+ 2V = 1 ¢ :
l—2x 1-—=x




Applying to Frobenius Problem

S ={A1a1+ -+ Agaq

N € Z>o0}.

Let T : (Aq,...,2\y) — Aaj 4 -+ Agag. Then
T(R,NZY) =5.

Can’'t technically apply theorem unless P is
bounded. But we can fix this, because only
a bounded piece of S is interesting.

Let N be bigger than largest integer not in S
(e.g. N =ajar---ag). Let
P:{(Ala"w)‘d)

d
A; > 0 and Z Aa; < N — 1}.
1=1

Then

S=T(PNZHU{N,N +1,...}.



Theorem 2 (-) For fixed d, there exists a pos-
itive integer s = s(d) and a polynomial time al-
gorithm which, given a rational polytope (i.e.,
bounded polyhedron) P and a linear transfor-
mation T : RY — RF such that T(Z%) c ZF,
computes f(S:x), where § = T(PNZ%), in the
form
xPi

Zo‘i(l ZXGi1) - (1 — xis)’

€1

where a; € Q and p;,q;; € 74,

Usually, T is a projection of some sort.
Example: T(z,y) = .

. L_
G'——h-‘-—l———f—‘—""'\?:ﬁ"‘_-r"-ﬁ—%
f ~3

|

.
f(S,x)=1 + z+ 3.



Hilbert Bases

Let aq,...,ay € Z% be linearly independent vec-
tors.
Let K = {ulal + - Fpgaglpi € Rzo}, the cone

generated by aj,...,ay4.

A Hilbert Basis is a set B ¢ K NZ% such that
every integer vector in K can be written as
a nonnegative integer combination of the ele-
ments of B.

Example: d =2,a7 = (=2,1),a> = (2,3).
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In fact, this is the Minimal Hilbert Basis
(the set of indecomposible integer vectors).



Let Q be a polyhedron such that Q N Z4 =
K NZ%\oO.

Let P=Q x Q and T : R24 — R? be defined by
T(z,y) =+ y.

Let S; = T(PNZ29), the set of decomposible
integer vectors, and S, = Q NZ%.

Then MHB = S, \ S1 and
f(MHB;x) = f(S2:x) — f(51,%).

(Again, technically, we must deal with bounded
sets.)



Idea of Proof
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T(z,y) =z. Let S=PNZ% and 8" =T(S).

F(S; z,y) = zy + zy? + zy® + 2%y + 22y? + 23y?
(S z) =z + 22 4+ 3.

£(S;z,1) = 3z + 222 4 3.

This would work if the projection were 1-1.

“Play” with P so that the projection is 1-1.



The projection of P\ P’ is 1-1.
So f(S';z) = f(P\ P,z 1).

We can find f(P \ P’;z,y) using the following
theorem:

Theorem 3 (Barvinok) For fixed d, if S1 and
S» are finite sets and we are given f(S1,x) and
f(So;x) in the usual form, we can compute
(81N S2;x), f(S1US2;x), and f(S1\ S2;x) in
polynomial time,



For projections with kernal of dim > 1, use fol-
lowing tool (Kannan;Kannan, Lovasz, Scarf):

.\- scos >soa
L]
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~ pieced  pieced

T(z,y,z) = .
width(B,v) := MmaXgcp(v,x) — MiNgcg(v, x).
width(B) 1= min ;4 width(B,v).

Can divide image into pieces such that, in each
piece, the fibers are almost the thinnest in a
particular direction.

le F(S N F:t(tl ;ﬁ) m\) -;(S ﬂﬂtﬁ-\:l} Sepal g’fels.
£05e) \s theSam.





