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Motivation 1:
Morphing two polygonal shapes

Question: when can we GUARANTEE simplicity,

for any duration of the constant-velocity motion?
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Motivation 2:
Morphing simple polygons with parallel 
edges (Guibas, Hershberger, Suri’00)

The motion is divided into pieces which are constant velocity, guaranteed to 
be collision free, and maintain the edge directions.

When can the whole morph be done with just one such motion?



Example:

When can the whole morph be done with just one such motion?
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Pointed Pseudo-
Triangulations:

Definitions

• Pseudo-Triangle
• Pointed Set of Edges
• PseudoTriangulation
• Pointed Pseudo-Triangulation



Pseudo Triangle

A simple polygon which has 
exactly three inner convex 
vertices.

In particular, a triangle is 
a pseudo-triangle.



Pointed Planar Set of Vectors

Pointed

Not Pointed

Two circularly adjacent 
vectors span a reflex angle



Pointed Pseudo Triangulation 
of a Planar Set of Points [S’00]

•Partitioning of the 
convex hull with a 
maximal set of  non-
crossing and pointed
interior edges. 

•The resulting faces are
pseudo-triangles.



Other Pseudo Triangulations

Not pointed Not pointedPointed



Pointed Pseudo Triangulations
Summary of main properties (S’00)

• Have exactly 2n-3 edges, n-2 faces
• Are pointed, and maximal with the property of 

being both planar and pointed.
• Have the hereditary Laman property: any subset 

of k vertices is planar, pointed and has <= 2k-3 
edges

• Admit an inductive (Henneberg) construction.

Are minimally rigid graphs 
(with a special embedding)



Main application of Pointed 
Pseudo-Triangulations

A solution to the 
Carpenter’s Rule Problem



The Carpenter’s Rule ProblemThe Carpenter’s Rule Problem

ODE-based:
Connelly, Demaine and Rote’00
See Erik Demaine’s web page 
http://theory.lcs.mit.edu/~edemaine

Pseudo-triangulation based:
(S’00)
From my web page 
http://cs.smith.edu/~streinu



My real motivation ☺
Pointed pseudo-triangulation mechanisms (S’00)

As fixed-edge length mechanisms: expansive

As parallel redrawing mechanisms: WHAT?



Why study them?

• Observed all ppt-mechanisms 
are planar (non-crossing)

• Observed points move with 
constant velocities

• Polygons on top of ppt
mechanisms morph without 
proper crossings

• Wanted to prove this

• Ppt-mechanisms special case of 
1dof Laman mechanism graphs: 
what about them?

• Is kinetic planarity characterized 
by pointed pseudo triangulation 
mechanisms?

• Apply it to other problems 
(morphing)



Overview:
• The Parallel Redrawing model of rigidity: 

• fixed edge-direction, rather than
• fixed edge-length

• Objects of study:
• 1dof Laman mechanisms
• Pointed pseudo-triangulation mechanisms

• Restricted to GENERIC situations
• Kinetic objects

• Points
• Embedded graphs
• Polygons

• Focusing on:
• Collisions
• Edge crossings
• Combinatorial invariants:

– Rigid components
– Oriented matroidal invariants:

» Partial hyperline sequences
» Combinatorial Pseudo-triangulations

• Algorithms:
• Parallel redrawing sweep

• Further directions:
• Kinetic point sets
• Kinetic graphs
• Combinatorial parallel redrawing sweep for combinatorial pseudo-triangulation 

mechanisms



Background:
Rigidity with fixed edge-lengths
versus fixed directions

Minimally Rigid (Minimally Rigid (LamanLaman) graph: ) graph: 2n2n--3 edges, 3 edges, 
every kevery k--subset spans <=2ksubset spans <=2k--3 edges3 edges
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Background:
Rigidity with fixed edge-lengths 
versus fixed directions

LamanLaman mechanism mechanism (1dof flexible)(1dof flexible)

NonNon--trivial parallel redrawingtrivial parallel redrawing



Background:
Relationship between motions in the 
two models

Orthogonal to each otherOrthogonal to each other
Reference: “folklore” from 19th century, 

see Whiteley, Matroids survey



Plan
• Configuration spaces of parallel redrawing 

Laman graphs and 1dof Laman mechanisms

• Parallel Redrawing Sweep for 1dof Laman
mechanisms

• Pointed pseudo-triangulation
mechanisms

• Further problems: kinetic point sets and
graphs, combinatorial sweeps
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• Pointed pseudo-triangulation
mechanisms

• Further problems: kinetic point sets and
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Direction networks and their 
parallel redrawings

Direction network (G,D):
• Graph G

• Set D of directions (slopes) for the edges



Direction networks and their 
parallel redrawings

Realization (embedding) of a direction network
• Mapping of vertices to points, edges to segments

• Consistent with given directions



Direction networks and their 
parallel redrawings

Parallel redrawing of an embedded graph:
• Another realization of its underlying direction network

• Always can obtain similar ones by translation and rescaling

• Interesting: non-similar (non-trivial) parallel redrawings
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Parallel redrawing of an embedded graph:
• Another realization of its underlying direction network

• Always can obtain similar ones by translation and rescaling

• Interesting: non-similar (non-trivial) parallel redrawings



Realization space 
and Configuration space

• Realization space: set of all possible realizations of a direction network

• Linear subspace of R2n: solutions of homogeneous linear system:

– For all edges ij: <dij, pi-pj>=0

– Rp=0, where R is the “parallel redrawing matrix”

-dij

i j

0 0dij0

One row 
per edge

ij

Two columns 
per vertex

t t



Realization space 
and Configuration space

of a 1dof parallel redrawing Laman mechanism
• Realization space: set of all possible realizations 
• Linear subspace of R2n: solutions of homogeneous linear system:

– For all edges ij: <dij, pi-pj>=0

– Rp=0, where R is the “parallel redrawing matrix”
• Factor out translations: pin down a vertex, e.g. p1=0. Still 

homogeneous, 2n-4 eqs, 2n-2 variables. 
• Configuration space: factor out scalings

– Projective view: factor out scalings (trivial parallel redrawings). 
Projective line in 2n-3 dim projective space.

– Affine view: eliminate a “point at infinity”. E.g. x2=1. Affine line 
in Euclidean 2n-3 space

– Oriented-projective view: factor by positive scalings. Oriented-
projective line = great circle on 2n-3 sphere.



Rp=0 and Rp=b

• Rp=0 for a mechanism gives the 
realization space.

• Rp=b for a Laman graph, b all-but-
one-zero vector, and one component 
acting as “time parameter”:

• Captures an affine part of the configuration 
space



Rp=0 and Rp=b
Generic: R max rank

• Rp=0 for a mechanism gives the 
realization space.

• Rp=b for a Laman graph, b all-but-
one-zero vector, and one component 
acting as “time parameter”:

• Captures an affine part of the configuration 
space



Plan
• Configuration spaces of parallel redrawing 

Laman graphs and 1dof Laman mechanisms

• Parallel Redrawing Sweep for 1dof Laman
mechanisms

• Pointed pseudo-triangulation
mechanisms

• Further problems: kinetic point sets and 
graphs, combinatorial sweeps



The Parallel Redrawing Sweep:
Visualizing the Configuration space of a 1dof Laman mechanism

Configuration space:
– Projective view: factor out scalings (trivial parallel redrawings). 

Projective line in 2n-3 dim projective space.
– Affine view: eliminate a “point at infinity” by pinning down 

one edge. Affine line in Euclidean 2n-3 space.
Lemma: Each point traces a linear trajectory: 

projection of config. space on the R2 of the 2 
coordinates of the point.

Lemma: Points move with constant velocities.
– Oriented-projective view: factor by positive 

scalings. Oriented-projective line = great circle on 2n-3 
sphere. Points trace ellipses.



The Parallel Redrawing Sweep:
Visualizing the Configuration space of a 1dof Laman mechanism

Configuration space:
– Projective view: factor out scalings (trivial parallel redrawings). 

Projective line in 2n-3 dim projective space.
– Affine view: eliminate a “point at infinity” by pinning down 

one edge. Affine line in Euclidean 2n-3 space.
Lemma: Each point traces a linear trajectory: projection 

of config. space on the R2 of the 2 coordinates of the 
point.

Lemma: Points move with constant velocities.
– Oriented-projective view: factor by positive 

scalings. Oriented-projective line = great circle on 2n-3 
sphere. Points trace ellipses.



The parallel redrawing sweep

• Sweep of an affine part of the configuration space:
– Determined by:

• Choice of a rigid component (to be the “point at infinity”): “pinned down” edge.
• Choice of an incident edge to “drive the sweep” (time parameter)

– Sequence of collision events: rigid components collapse
• Understanding the sequence of collision events:

– A rigid component “reverses” (rotates by 180 degrees, i.e. scales by 
a negative factor)

Lemma: At a collision event, the contraction of G on the collapsed edges is a 
Laman graph.

Lemma: The (constant) velocities are the “coordinates” of an 
“embedding” of the collapsed Laman graph on the r-component at 
“infinity”.
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a negative factor)
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Laman graph.

Lemma: The (constant) velocities are the “coordinates” of an 
“embedding” of the collapsed Laman graph on the r-component at 
“infinity”.



The parallel redrawing sweep: 
3d (space-time) view

A plane sweep of a SPECIAL 3d line arrangement



Algorithmic aspects:
• Computing the (combinatorial) events: rigid 

components of a Laman mechanism

• Predicting the next collision :
– Linear algebra
– Can it be done combinatorially?
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Algorithmic aspects:
• Computing the (combinatorial) events: rigid 

components of a Laman mechanism

• Predicting the next collision :
– Linear algebra
– Can it be done combinatorially?

The parallel redrawing sweep

As in “topological sweep” versus 
“line sweep”. Yes, for pseudo 

triangulation mechanisms



Plan
• Configuration spaces of parallel redrawing 

Laman graphs and 1dof Laman mechanisms

• Parallel Redrawing Sweep for 1dof Laman
mechanisms

• Pointed pseudo-triangulation
mechanisms

• Further problems: kinetic point sets and
graphs, combinatorial sweeps



Parallel Redrawing Pointed pseudo-
triangulation 1dof-mechanisms

• Pointed Pseudo-triangulation mechanisms 
(1dof, convex hull missing edge) are non-
crossing throughout a parallel sweep

• Replacing a rigid component by another 
non-crossing graph (on the same kinetic 
point set) is again a kinetic non-crossing 
graph

Proof:
• Use expansiveness property of pseudo-triangulation mechanisms:

• Interpreted in parallel redrawing setting: all are pseudo-triangulations
• Look at oriented matroidal invariants maintained through the parallel 

sweep (partial unsigned hyperlines / combinatorial pseudo-triangulations): 
the facial structure is maintained



Parallel Redrawing Pointed pseudo-
triangulation 1dof-mechanisms

• Lemma: σij =
do not change during pr-sweep

• Corollary: signs don’t change. Hence all positive (expansive). Hence 
it is a pt-mechanism.

• Lemma: next event only among the “flippable” r-components. Must 
be extreme at incident joints, and incident components oriented 
the same way. Property maintained after the event (“flip”).

• Lemma: Planar face structure doesn’t change. Only combinatorial 
pseudo-triangulation.

• Obs: Captures partial oriented matroid information (signed 
hyperlines) of embedded graph.



Parallel Redrawing Pointed pseudo-
triangulation 1dof-mechanisms

• Pointed Pseudo-triangulation mechanisms 
(1dof, convex hull missing edge) are non-
crossing throughout a parallel sweep

• Replacing a rigid component by another 
non-crossing graph (on the same kinetic 
point set) is again a kinetic non-crossing 
graph



Plan
• Configuration spaces of parallel redrawing 

Laman graphs and 1dof Laman mechanisms

• Parallel Redrawing Sweep for 1dof Laman
mechanisms

• Pointed pseudo-triangulation
mechanisms

• Further problems: kinetic point sets and
graphs, combinatorial sweeps



Study collisions in:

Kinetic Point Sets

• Points in continuous motion
• Moving with constant velocities

• Linear trajectories
• Constant speeds



Study crossings in:

Kinetic Graphs

• Graphs drawn (embedded) on kinetic 
point sets



Study:
Combinatorial (Topological) 
Parallel Redrawing Sweep

• For pointed combinatorial pseudo-
triangulation mechanisms

• Next event predicted combinatorially
• Is every combinatorial sequence 

realizable?



Questions?

http://cs.smith.edu/~streinu/Research/KineticPT


