Coefficients and Roots of Ehrhart Polynomials

Julian Pfeifle MSRI & Universitat de Barcelona julian@msri.org

joint work with Matthias Beck, Mike Develin & Jesús De Loera

Index

- Introduction to Ehrhart polynomials
- Linear inequalities on the coefficients
- Bounds on the roots
- Conjectures & open problems

Measuring volume by counting

A convex *d*-dimensional polytope $P \subset \mathbb{R}^d$ is a **lattice polytope** if vert $P \subset \mathbb{Z}^d$.

Approximate vol P by counting lattice points


```
Theorem (Ehrhart 1967) The function
i_P : \mathbb{N} \to \mathbb{N}, \quad i_P(n) = \#\{nP \cap \mathbb{Z}^d\}
```

 \blacktriangleright is a polynomial in n of degree d,

▶ with leading coefficient vol *P*, and constant term 1.

Calculate $\operatorname{vol} P$ by counting lattice points in d dilated copies of P.

Ehrhart reciprocity

 $\blacktriangleright i_P(n)$ is a polynomial in n

▶ therefore, it is defined for $n \in \mathbb{Z}$ (even $n \in \mathbb{C}$)

$$i_P(n) = \frac{15}{2}n^2 + \frac{5}{2}n + 1$$

Ehrhart reciprocity: count the number of interior lattice points by evaluating i_P at negative integers n:

$$#\left\{\operatorname{relint}(nP) \cap \mathbb{Z}^d\right\} = (-1)^d i_P(-n).$$

Bases for polynomials, I

Two bases for the vector space of polynomials $p \in \mathbb{R}[n]$ of degree d:

Power basis:
$$p(n) = \sum_{i=0}^{d} c_i n^i$$
 if $p = i_P$, highest coefficients
express geometry of polytope P
 $c_d = \operatorname{vol}_d P$, normalized w.r.t. \mathbb{Z}^d
 $c_{d-1} = \frac{1}{2} \sum_{F \text{ facet of } P} \operatorname{vol}_{d-1} F$, normalized w.r.t. $\mathbb{Z}^{d-1} \cong \mathbb{Z}^d \cap \operatorname{aff} F$
 $c_0 = 1$
 $i_P(n) = 2n^2 + \frac{4}{2}n + 1$

Bases for polynomials, II

Binomial coefficient basis:

$$p(n) = \sum_{i=0}^{d} a_i \binom{n+d-i}{d}$$

e.g.
$$P = \Delta^d$$
 embedded in $x_{d+1} = 1$:

 a_i counts the number of lattice points at height i in the half-open parallelopiped $\{x \in \mathbb{R}^{d+1} : x = \sum_{i=0}^{d+1} \lambda_i v_i, 0 \le \lambda < 1\}$

$$i_{\Delta^2} = \mathbf{1} \cdot \binom{n+2}{2} + \mathbf{2} \cdot \binom{n+1}{2} + \mathbf{1} \cdot \binom{n}{2} = 2n^2 + 2n + 1$$

Linear inequalities, I

$$p(n) = \sum_{i=0}^{d} c_{i} n^{i} = \sum_{i=0}^{d} a_{i} \binom{n+d-i}{d}$$

Theorem [Stanley 1980]

$$a_i \geq 0, \quad i=0,1,\ldots,d$$

Theorem [Betke & McMullen, 1984]

$$c_j \leq \begin{bmatrix} d \\ j \end{bmatrix} c_d + \frac{1}{(d-1)!} \begin{bmatrix} d \\ j+1 \end{bmatrix} \qquad j = 0, 1, \dots, d$$

Linear inequalities, II

k-th iterated difference:

$$\Delta p(n) = p(n+1) - p(n)$$

$$\Delta^k p(n) = \sum_{i=0}^d a_i \binom{d+n-i}{d-k} \qquad k \ge 1$$

Theorem If $a_i \ge 0$ for $0 \le i \le d$, then

$$\begin{pmatrix} d \\ \ell \end{pmatrix} \Delta^k p(0) \leq \begin{pmatrix} d \\ k \end{pmatrix} \Delta^\ell p(0), \quad \begin{array}{c} \text{for } 0 \leq k < \\ \text{PSfrag replay} \end{pmatrix}$$

In particular,

$$\begin{pmatrix} d \\ k \end{pmatrix} \leq \Delta^k p(0) \leq \binom{d}{k} d! c_d$$

for
$$0 \le k \le d$$
.

0

Roots of Ehrhart polynomials

▶ P is lattice polytope \implies no $n \in \mathbb{N}$ is root of i_P

▶ Ehrhart reciprocity \implies if $(nP)^{\circ} \cap \mathbb{Z}^d = \emptyset$, then $i_P(-n) = 0$ for $n \in \mathbb{N}$

Standard simplex: $\Delta^d = \operatorname{conv} \{0, e_1, \dots, e_d\}$

$$i_{\Delta^d}(n) = \binom{n+d}{d} \implies \text{roots are } -d, -d+1, \dots, -1$$

Standard cross-polytope: $\diamondsuit^d = \{ x \in \mathbb{R}^d : |x_1| + \cdots + |x_d| \le 1 \}$ Theorem [Bump et al. 1999, Rodriguez 2000]

$$i_{\diamondsuit^d}(z) = 0, \ z \in \mathbb{C} \implies \operatorname{Re}(z) = \frac{1}{2}$$

Real roots of (Ehrhart) polynomials, I

Proposition. Let $a_i \geq 0$ for $i = 0, 1, \ldots, d$, and

$$p(n) = \sum_{i=0}^{d} a_i \binom{n+d-i}{d}.$$

(a) For $d \ge 1$, all real roots of p lie in the interval [-d, d-1). (b) These bounds are tight. (-d is obvious.)

Proof.

▶ If
$$n > d - 1$$
, then $\binom{n+d-i}{d} > 0$.

▶ If
$$n < -d$$
, then $(-1)^d \binom{n+d-i}{d} > 0$.

 \blacktriangleright (b) easy by adjusting a_i 's.

Real roots of Ehrhart polynomials, II

Theorem. Let $a_i \ge 0$ for i = 0, 1, ..., d and $c_{d-1} \ge 0$. Then all roots of

$$p = \sum_{i=0}^{d} a_i \binom{n+d-i}{d} = \sum_{i=0}^{d} c_i n^i$$

are contained in $\left[-d, \lfloor d/2 \rfloor\right)$.

Proof. Use $c_{d-1} = \frac{1}{(d-1)!} \sum_{i=0}^{d} a_i (d-2i+1)$ and the following lemma:

Lemma. (Newton Bound)

Let $f \in \mathbb{R}[n]$ be a polynomial of degree d and $B \in \mathbb{R}$ be such that

$$f^{(\ell)}(B) > 0$$
 for $\ell = 0, 1, \dots, d$.

 \square

Then all real roots of f are contained in $(-\infty, B)$.

Real roots of Ehrhart polynomials, Ila

Proof, contd. Put $B = \lfloor d/2 \rfloor$. Now $\sum_{i=0}^{d} a_i (d - 2i + 1) > 0$ and $i_P^{(\ell)}(B) = \frac{\ell!}{d!} \sum_{i=0}^{d} a_i g_i(B, \ell)$.

Claim. For each $0 \le \ell \le d$, there exists a $\lambda(\ell) > 0$ with

(*) $g_i(B,\ell) > \lambda(\ell) (d-2i+1)$ for all $0 \le i \le d$.

The theorem now follows from

$$0 < \sum_{i=0}^{d} (g_i(B,\ell) - \lambda(\ell) s(i)) a_i$$

<
$$\sum_{i=0}^{d} (g_i(B,\ell) - \lambda(\ell) s(i)) a_i + \lambda(\ell) \sum_{i=0}^{d} a_i s(i) = \frac{d!}{\ell!} i_P^{(\ell)}(B).$$

Real roots of Ehrhart polynomials, IIb

Claim. For each $0 \le \ell \le d$, there exists a $\lambda(\ell) > 0$ with

(*) $g_i(B,\ell) > \lambda(\ell) (d-2i+1)$ for all $0 \le i \le d$.

Real roots of Ehrhart polynomials, IIb

Claim. For each $0 \le \ell \le d$, there exists a $\lambda(\ell) > 0$ with

(*) $g_i(B,\ell) > \lambda(\ell) (d-2i+1)$ for all $0 \le i \le d$.

PSfrag replacements

c_{d-1} ≥ 0 is the only known inequality with negative a-coefficients
 g_i(n, ℓ) can be negative for n < B ⇒ cannot apply Newton Bound

Complex roots of Ehrhart polynomials

Complex roots of Ehrhart polynomials, II

Some conjectures

Conjecture 1. All real roots α of Ehrhart polynomials of lattice d-polytopes satisfy $-d \leq \alpha < 1$. (True for d = 4; the upper bound 1 is tight)

Conjecture 2. Set $T = \{t_1, t_2, \ldots, t_m\} \in \mathbb{Z}$, and let

$$C(T,d) = \operatorname{conv}\left\{(t_i, t_i^2, \dots, t_i^d) : t_i \in T\right\}$$

be an integral cyclic polytope. Then

$$i_{C(T,d)}(n) \stackrel{?}{=} \sum_{k=0}^{d} \operatorname{vol}_k (C(T,k)) n^k.$$

Conjecture 3. The Ehrhart polynomial of any 0/1-polytope has only non-negative coefficients.