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Measuring volume by counting

A convex d-dimensional polytope P C R s a lattice polytope if vert P C Z<.

» Approximate vol P by counting lattice points

o o o ¢ o Theorem (Ehrhart 1967) The function

ip: N — N, ip(n) = #{nPNZ}

» is a polynomial in n of degree d,

. » with leading coefficient vol P, and constant
. term 1.

Calculate vol P by counting lattice points in d dilated copies of P.



Ehrhart reciprocity

» ip(n) is a polynomial in n

» therefore, it is defined for n € Z (even n € C)

. 15 5!
ip(n) = ?n2+§n+1

Ehrhart reciprocity: count the number of interior
lattice points by evaluating 7 p at negative integers n:

#{ relint(nP)NZ*} = (=1)%ip(—n).




Bases for polynomials, |

Two bases for the vector space of polynomials p € R[n| of degree d:

d .
Power basis: (n) = Zoni if p = ip, highest coefficients
. — ‘ express geometry of polytope P
» c; = voly P, normalized w.r.t. Z¢
» Cig_—1 = % Z voly_1 F, normalized w.r.t. Z% 1 = 79N aff

F' facet of P

4
J z'p(n):2n2+§n+1




Bases for polynomials, Il
4 n+d—1
Bi ial coefficient basis: :E i
inomial coefficient basis: p(n) 7;:Oa ( p )

e.g. P = A% embedded in 24, = 1:

° "
/'/: * .,x'.“/;‘,/'/‘ a; counts the number of lattice points at
° P .

height 7 in the half-open parallelopiped
d+1

{wERdH: iIZ‘:Z)\i’UZ', O§A<1}
i=0

()
() ()

— Mm%+ om+1




Linear inequalities, |

Theorem [Betke & McMullen, 1984]

d 1 d
- < 1 =0,1,...,d
o < [jf et a4 1=00




Linear inequalities, Il
k-th iterated difference:

Ap(n) = p(n+1)—p(n)
d
AFp(n) = Zai(d;szz> k>0

Theorem Ifa; > 0 for 0 <1 < d, then

(Cé) AFp(0) < (Z) Alp(0), for0<k<(<d.

In particular,




Roots of Ehrhart polynomials

» P is lattice polytope = no n € N is root of ip

» Ehrhart reciprocity = if (nP)°NZY =10, then ip(—n) =0 for n € N

Standard simplex: AY = conv {O, 61,--.,6d}
d
ind(n) = (n;ll— ) — rootsare —d,—d+1,...,—1

Standard cross-polytope: ¢% = {x € R?: ||+ -+ |zq) < 1}
Theorem [Bump et al. 1999, Rodriguez 2000]

1
icd(2) =0, 26 C = Re(z) = 5



Real roots of (Ehrhart) polynomials, |

Proposition. Let a; >0 for : =0,1,...,d, and
a (n +d— z)
- Y |
1=0

(a) For d > 1, all real roots of p lie in the interval [—d,d — 1).
(b) These bounds are tight. (—d is obvious.)

Proof.

» Ifn>d—1, then (n—l—;i—z) > 0.

g
» If n < —d, then (—1)d(n i Z) > 0.

» (b) easy by adjusting a;'s.



Real roots of Ehrhart polynomials, |l

Theorem. Let a; >0 for :=0,1,...,d and c4_1 > O.
Then all roots of

d d
Zaz(n—kd—z) _ Zcini

1=0

are contained in [—d, |d/2]).

Proof. Use c4_1 =

d
I Zaz d — 2i 4+ 1) and the following lemma:
1=0

Lemma. (Newton Bound)

Let f € R[n| be a polynomial of degree d and B € R be such that
FfO9B)>0 for £=0,1,...,d.

Then all real roots of f are contained in (—o0, B).



Real roots of Ehrhart polynomials, lla

d
Proof, contd. Put B = [d/2]. Now Z a; (d—21+1) > 0 and
i=0

d

(0 0!

Z%)(B) T Zaigi(Baf)-
" i=0

Claim. For each 0 </ < d, there exists a A(¢) > 0 with
(%) gi(B,2) > X(£)(d—2t+1) forall 0 <i<d.

The theorem now follows from

d
0 < Z(gi(B,E)—)\(E)s(i))ai
4 . d . d' (o
< Z(gi(B,E)—)\(E)s(z))aﬂr)\(é) > ais(i) = rip (B

~
I

(@)
I

O

7



Real roots of Ehrhart polynomials, llb

Claim. For each 0 </ < d, there exists a A(¢) > 0 with

(%) gi(B,€) > A(f)(d—21+1) forall 0<1i<d.

coefficient of a;

4

A(®) (d — 2i + 1)



Real roots of Ehrhart polynomials, llb

Claim. For each 0 </ < d, there exists a A(¢) > 0 with

() gi(B,£) > X&) (d—2i+1) forall 0<i<d.

coefficient of a;

A(0) (d — 2i + 1)

» c4_1 > 0 is the only known inequality with negative a-coefficients

» ¢gi(n, /) can be negative for n < B = cannot apply Newton Bound



Complex roots of Ehrhart polynomials




Complex roots of Ehrhart polynomials, Il
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Some conjectures

Conjecture 1. All real roots « of Ehrhart polynomials of lattice d-polytopes
satisfy —d < a < 1. (True for d = 4; the upper bound 1 is tight)

Conjecture 2. Set T = {t1,ts,...,t,n} € Z, and let
C(T, d) = conv {(tz‘,t?, ce ,tgl) 11 € T}

be an integral cyclic polytope. Then

d
iC’(T,d) (n) ; Z VOlk (C(T, :ZC)) nk.
k=0

Conjecture 3. The Ehrhart polynomial of any 0/1-polytope has only non-
negative coefficients.



