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Measuring volume by counting

A convex d-dimensional polytope P ⊂ R
d is a lattice polytope if vertP ⊂ Z

d.

I Approximate vol P by counting lattice points

2P
P

Theorem (Ehrhart 1967) The function

iP : N → N, iP (n) = #
{

nP ∩ Z
d
}

I is a polynomial in n of degree d,

I with leading coefficient vol P , and constant
term 1.

Calculate vol P by counting lattice points in d dilated copies of P .



Ehrhart reciprocity

I iP (n) is a polynomial in n

I therefore, it is defined for n ∈ Z (even n ∈ C)

iP (n) =
15

2
n2 +

5

2
n + 1

Ehrhart reciprocity: count the number of interior
lattice points by evaluating iP at negative integers n:

#
{

relint(nP ) ∩ Z
d
}

= (−1)d iP (−n) .

2P
P



Bases for polynomials, I

Two bases for the vector space of polynomials p ∈ R[n] of degree d:

Power basis: p(n) =

d
∑

i=0

ci ni if p = iP , highest coefficients
express geometry of polytope P

I cd = vold P , normalized w.r.t. Zd

I cd−1 = 1
2

∑

F facet of P

vold−1 F , normalized w.r.t. Zd−1 ∼= Zd ∩ aff F

I c0 = 1

iP (n) = 2n2 +
4

2
n + 1



Bases for polynomials, II

Binomial coefficient basis: p(n) =
d

∑

i=0

ai

(

n + d − i

d

)

0
PSfrag replacements

Rd

e.g. P = ∆d embedded in xd+1 = 1:

ai counts the number of lattice points at
height i in the half-open parallelopiped

{

x ∈ R
d+1 : x =

d+1
∑

i=0

λi vi, 0 ≤ λ < 1
}

i∆2 = 1 ·

(

n + 2

2

)

+ 2 ·

(

n + 1

2

)

+ 1 ·

(

n

2

)

= 2n2 + 2n + 1



Linear inequalities, I

p(n) =
d

∑

i=0

ci ni =
d

∑

i=0

ai

(

n + d − i

d

)

Theorem [Stanley 1980]

ai ≥ 0, i = 0, 1, . . . , d

Theorem [Betke & McMullen, 1984]

cj ≤

[

d

j

]

cd +
1

(d − 1)!

[

d

j + 1

]

j = 0, 1, . . . , d



Linear inequalities, II

k-th iterated difference:

∆p(n) = p(n + 1) − p(n)

∆kp(n) =

d
∑

i=0

ai

(

d + n − i

d − k

)

k ≥ 0

Theorem If ai ≥ 0 for 0 ≤ i ≤ d, then

(

d

`

)

∆kp(0) ≤

(

d

k

)

∆`p(0), for 0 ≤ k < ` ≤ d .

In particular,

(

d

k

)

≤ ∆kp(0) ≤

(

d

k

)

d! cd for 0 ≤ k ≤ d .
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Roots of Ehrhart polynomials

I P is lattice polytope =⇒ no n ∈ N is root of iP

I Ehrhart reciprocity =⇒ if (nP )◦∩Zd = ∅, then iP (−n) = 0 for n ∈ N

Standard simplex: ∆d = conv
{

0, e1, . . . , ed

}

i∆d(n) =

(

n + d

d

)

=⇒ roots are − d,−d + 1, . . . ,−1

Standard cross-polytope: 3
d =

{

x ∈ Rd : |x1| + · · · + |xd| ≤ 1
}

Theorem [Bump et al. 1999, Rodriguez 2000]

i
3d(z) = 0, z ∈ C =⇒ Re(z) =

1

2



Real roots of (Ehrhart) polynomials, I

Proposition. Let ai ≥ 0 for i = 0, 1, . . . , d, and

p(n) =
d

∑

i=0

ai

(

n + d − i

d

)

.

(a) For d ≥ 1, all real roots of p lie in the interval [−d, d − 1).

(b) These bounds are tight. (−d is obvious.)

Proof.

I If n > d − 1, then

(

n + d − i

d

)

> 0.

I If n < −d, then (−1)d

(

n + d − i

d

)

> 0.

I (b) easy by adjusting ai’s.



Real roots of Ehrhart polynomials, II

Theorem. Let ai ≥ 0 for i = 0, 1, . . . , d and cd−1 ≥ 0.
Then all roots of

p =
d

∑

i=0

ai

(

n + d − i

d

)

=
d

∑

i=0

ci n
i

are contained in [−d, bd/2c).

Proof. Use cd−1 =
1

(d − 1)!

d
∑

i=0

ai (d − 2i + 1) and the following lemma:

Lemma. (Newton Bound)

Let f ∈ R[n] be a polynomial of degree d and B ∈ R be such that

f (`)(B) > 0 for ` = 0, 1, . . . , d .

Then all real roots of f are contained in (−∞, B). 2



Real roots of Ehrhart polynomials, IIa

Proof, contd. Put B = bd/2c. Now

d
∑

i=0

ai (d − 2i + 1) > 0 and

i
(`)
P (B) =

`!

d!

d
∑

i=0

ai gi(B, `) .

Claim. For each 0 ≤ ` ≤ d, there exists a λ(`) > 0 with

(∗) gi(B, `) > λ(`) (d − 2i + 1) for all 0 ≤ i ≤ d.

The theorem now follows from

0 <
d

∑

i=0

(

gi(B, `) − λ(`) s(i)
)

ai

<
d

∑

i=0

(

gi(B, `) − λ(`) s(i)
)

ai + λ(`)
d

∑

i=0

ai s(i) =
d!

`!
i
(`)
P (B) .



Real roots of Ehrhart polynomials, IIb

Claim. For each 0 ≤ ` ≤ d, there exists a λ(`) > 0 with

(∗) gi(B, `) > λ(`) (d − 2i + 1) for all 0 ≤ i ≤ d.

.

PSfrag replacements
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Real roots of Ehrhart polynomials, IIb

Claim. For each 0 ≤ ` ≤ d, there exists a λ(`) > 0 with

(∗) gi(B, `) > λ(`) (d − 2i + 1) for all 0 ≤ i ≤ d.

PSfrag replacements

gi(B, `)

gi(n, `), n < B

0

d

B B + 1

B + 2
i

λ(`) (d − 2i + 1)

coefficient of ai

I cd−1 ≥ 0 is the only known inequality with negative a-coefficients

I gi(n, `) can be negative for n < B =⇒ cannot apply Newton Bound



Complex roots of Ehrhart polynomials
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Complex roots of Ehrhart polynomials, II
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Some conjectures

Conjecture 1. All real roots α of Ehrhart polynomials of lattice d-polytopes
satisfy −d ≤ α < 1. (True for d = 4; the upper bound 1 is tight)

Conjecture 2. Set T = {t1, t2, . . . , tm} ∈ Z, and let

C(T, d) = conv
{

(ti, t
2
i , . . . , t

d
i ) : ti ∈ T

}

be an integral cyclic polytope. Then

iC(T,d)(n)
?
=

d
∑

k=0

volk
(

C(T, k)
)

nk.

Conjecture 3. The Ehrhart polynomial of any 0/1-polytope has only non-
negative coefficients.


