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Abstract. The kissing number τn is the maximal number of equal size

nonoverlapping spheres in n dimensions that can touch another sphere of
the same size. The number τ3 was the subject of a famous discussion
between Isaac Newton and David Gregory in 1694. The Delsarte method

gives an estimate τ4 ≤ 25. In this paper we present an extension of the
Delsarte method and use it to prove that τ4 = 24. We also present a new

proof that τ3 = 12.
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1. Introduction

The kissing number (contact number, coordination number, ligancy, or
Newton number) τn is the highest number of equal nonoverlapping spheres

in Rn that can touch another sphere of the same size. Here the verb kiss
refers to the game of billiards, where it signifies two balls that just touch
each other. In three dimensions the kissing number problem is asking how

many white billiard balls can kiss a black ball.

It is easy to see τ1 = 2 and τ2 = 6. The kissing number in three dimen-
sions was the subject of a famous discussion between Isaac Newton and

David Gregory in 1694 (May 4, 1694, see details in [G. Szpiro, Newton and
the kissing problem, http://plus.maths.org/issue23/features/kissing/).

Newton believed the answer was 12, while Gregory thought that 13 might
be possible. The correct answer is τ3 = 12.

If the 12 spheres are placed at positions corresponding to the vertices of

a regular icosahedron concentric with the central sphere, these 12 spheres
do not touch each other and may all be moved freely.

This problem is often called the thirteen spheres problem. Several Ger-

man papers in 1874/75 described approaches to the problem, but “certain
ideas emerged in... (these papers) ...only to be ignored ... so that they
waited until 1950 to be rediscovered and expanded in the joint works of

W. Habicht, K. Schütte and B.L. van der Waerden ” [Danzer]. Schütte
and van der Waerden gave a detailed proof in 1953. A subsequent proof by

Leech [?] in 1956 “... although elementary and straightforward, it cannot
be called trivial”[Conway - Sloane].
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Coxeter proposed upper bounds on τn in 1963; for n = 4, 5, 6, 7, and 8
these bounds were 26, 48, 85, 146, and 244, respectively. Coxeter’s bounds

are based on the conjecture that equal size spherical caps on a sphere Sk

can be packed no denser than k+1 spherical caps on Sk that simultaneously

touch one another. Böröczky proved this conjecture in 1978.

The main progress in the kissing number problem was in the end of
1970’s. Levenshtein, Odlyzko and Sloane independently proved that

τ8 = 240, τ24 = 196 560 in 1979. In Odlyzko - Sloane’s paper the Delsarte
method was applied in dimensions up to 24. For comparison with the values

of Coxeter’s bounds on τn for n = 4, 5, 6, 7, and 8 this method gives 25,
46, 82, 140, and 240, respectively. (For n = 3 Coxeter’s and Delsarte’s

methods only gave τ3 ≤ 13.) Kabatiansky and Levenshtein have found
an asymptotic upper bound 20.401n(1+o(1)) for τn in 1978. The lower bound
20.2075n(1+o(1)) was found by Wyner in 1965.
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Note that τ4 ≥ 24. Indeed, the unit sphere in R4 centered at (0, 0, 0, 0)
has 24 unit spheres around it, centered at the points (±√

2,±√
2, 0, 0),

with any choice of signs and any ordering of the coordinates.

Arestov and Babenko in 1997 proved that the bound τ4 ≤ 25 cannot
be improved using Delsarte’s method.
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The kissing number problem can be stated in other way: How many
points can be placed on the surface of an unit sphere Sn−1 in Euclidean

space Rn so that the angular separation between any two points is at least
60◦? This leads to an important generalization: a finite subset X of Sn−1

is called a spherical z-code if for every pair (x, y) of X the scalar product
x · y ≤ z. Spherical codes have many applications. The main application

outside mathematics is in the design of signals for data transmission and
storage. There are interesting applications to the numerical evaluation of

n-dimensional integrals.

For any X ⊂ Sk−1 denote by ϕ(X) the minimum of the angular separa-
tion between any two points of X: ϕ(X) = min {φij, i �= j}. Let

ϕk(M) = max {ϕ(X), |X| = M, X ⊂ Sk−1}.
It is clear that ϕ2(M) = 360◦/M . In three dimensions ϕ3(M) is the largest
angular separation that can be attained in a spherical code on S2 contain-

ing M points. This is sometimes called Tammes’ problem, after the Dutch
botanist who was led to this question by studying the distribution of pores

on pollen grains. Equivalently we can ask: where should M inimical dicta-
tors build their palaces on a planet so as to be as far away from each other

as possible?

The best codes and the values ϕ3(M) presently known for
M ≤ 12 and M = 24:

M=3,4,6,12 - L. Fejes-Tóth, 1943;
M=5,7,8,9 - K. Schütte and B.L. van der Waerden, 1951;
M=10,11 - L. Danzer, 1963;

M=24 - R.M. Robinson, 1961.
For instance, ϕ3(5) = ϕ3(6) = 90◦, ϕ3(7) = 77.86954...◦

(cosϕ3(7) = cot 40◦ cot 80◦).
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2. Gegenbauer polynomials and
Schoenberg’s theorem.

Let X = {x1, x2, . . . , xM} be any finite subset of the unit sphere Sn−1.
By φij we denote the spherical (angular) distance between xi, xj. It is

clear that for any real numbers u1, u2, . . . , uM the relation

||
∑

uixi||2 =
∑
i,j

cosφijuiuj ≥ 0

holds, or equivalently the Gram matrix T (X) is positive definite, where
T (X) = (tij), tij = cosφij = xi · xj.

Example. Let X ⊂ S1 ⊂ C, xk = exp (iφk). Suppose

X(m) = {xm1 , . . . , xmM} = {exp (imφ1), . . . , exp (imφM)},
T (X(m)) = (cos (mφij)), φij = φi − φj .

Therefore, the matrix (f(tij)) is positive definite, where

f(t) = cosmφ, t = cosφ, m = 1, 2, 3, ...

Schoenberg extended this property for all dimensions n. He considered

functions f(cosφ) that give positive definite matrix (f(tij)) for arbitrary

subset X of Sn−1. Denote by G
(n)
k (t) Gegenbauer (ultraspherical) polyno-

mials.

Theorem (Schoenberg, 1942) If gij = G
(n)
k (tij), then the matrix (gij)

is positive definite.

The converse holds also: if f(t) is a real polynomial and for any finite

X ⊂ Sn−1 the matrix (f(tij)) is positive definite, then f is a sum of G
(n)
k

with nonnegative coefficients.
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Let us recall the definition of Gegenbauer polynomials. Suppose C
(n)
k (t)

be the polynomials defined by the expansion

(1 − 2rt+ r2)1−n/2 =
∞∑
k=0

rkC
(n)
k (t).

Then the polynomials G
(n)
k (t) = C

(n)
k (t)/C

(n)
k (1) are called Gegenbauer or

ultraspherical polynomials. (So the normalization of G
(n)
k is determined by

the condition G
(n)
k (1) = 1.)

The Gegenbauer polynomials G
(n)
k can be defined another way:

G
(n)
0 = 1, G

(n)
1 = t, . . . , G

(n)
k =

(2k + n− 4) tG
(n)
k−1 − (k − 1)G

(n)
k−2

k + n− 3

They are orthogonal on the interval [−1, 1] with respect to the weight

function ρ(t) = (1 − t2)(n−3)/2. In the case n = 3, G
(n)
k are Legendre

polynomials Pk, and G
(4)
k are Chebyshev polynomials of the second kind

(with normalization Uk(1) = 1),

G
(4)
k (t) = Uk(t) =

sin ((k + 1)φ)

(k + 1) sinφ
, t = cosφ, k = 0, 1, 2, . . .

For instance, U0 = 1, U1 = t, U2 = (4t2 − 1)/3,

U3 = 2t3 − t, U4 = (16t4 − 12t2 + 1)/5,

U9 = (256t9 − 512t7 + 336t5 − 80t3 + 5t)/5.
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3. Delsarte’s method

The Delsarte method (also known in coding theory as Delsarte’s linear

programming method, Delsarte’s scheme, polynomial method) is described
in [Conway-Sloane, Levenshtein etc]. Let f(t) be a real polynomial such

that f(t) ≤ 0 for t ∈ [−1, z], the coefficients ck’s in the expansion of f(t) in

terms of Gegenbauer polynomials G
(n)
k are nonnegative, and c0 = 1. Then

the maximal number of points in a spherical z-code in Sn−1 is bounded
by f(1). Suitable coefficients ck’s can be found by the linear programming
method.

Let us now prove the bound of Delsarte’s method. If a matrix (gij) is

positive definite, then for any real ui the inequality
∑
gijuiuj ≥ 0 holds,

and then for ui = 1, we have
∑
i,j

gij ≥ 0. Therefore, for gij = G
(n)
k (tij), we

obtain
M∑
i=1

M∑
j=1

G
(n)
k (tij) ≥ 0 (3.1)

Suppose

f(t) = c0G
(n)
0 (t) + . . .+ cdG

(n)
d (t), where c0 ≥ 0, . . . , cd ≥ 0. (3.2)

Let F (X) =
∑
i

∑
j

f(tij). Using (3.1), we get

F (X) =

d∑
k=0

M∑
i=1

M∑
j=1

ckG
(n)
k (tij) ≥

M∑
i=1

M∑
j=1

c0G
(n)
0 (tij) = c0M

2. (3.3)

Theorem (Delsarte, 1972) Let X = {x0, . . . , xM} ⊂ Sn−1 be a spher-

ical z-code. Suppose f(t) satisfies (3.2) and f(t) ≤ 0 for t ∈ [−1, z]. If
c0 > 0, then

M ≤ f(1)

c0
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Proof. Note that tii = 1. Then

F (X) = Mf(1) + 2f(t12) + . . .+ 2f(tM−1M) ≤Mf(1).

If we combine this with (3.2), then for c0 > 0 we get M ≤ f(1)/c0.

This inequality play a crucial role in the Delsarte method. If z = 1/2

and c0 = 1, then it implies τn ≤ f(1). Levenshtein, Odlyzko and Sloane
have found the polynomials f(t) such that f(1) = 240, when n = 8; and

f(1) = 196 560, when n = 24. Thus τ8 ≤ 240, τ24 ≤ 196 560. //When
n = 8, 24, there exist sphere packings (E8 and Leech lattices) with these
kissing numbers. Thus τ8 = 240 and τ24 = 196 560.

When n = 4, a polynomial f of degree 9 with f(1) = 25.5585... was
found by Odlyzko and Sloane. This implies 24 ≤ τ4 ≤ 25.

Let us prove that τ8 ≤ 240.

f(t) =
320

3
(t+ 1) (t+ 1/2)2 t2 (t− 1/2)

= G
(8)
0 +

16

7
G

(8)
1 +

200

63
G

(8)
2 +

832

231
G

(8)
3 +

1216

429
G

(8)
4 +

5120

3003
G

(8)
5 +

2560

4641
G

(8)
6 .

We have c0 = 1, f(1) = 240; then M ≤ 240.

9



4. An extension of Delsarte’s method.

If A = [−1, z] ∪ {1}, then tij ∈ A for all i, j.
Let A+ = {t : t ∈ A and f(t) > 0} and

Fi(X) =
∑

j:tij∈A+

f(tij),

then

F (X) ≤
M∑
i=1

Fi(X). (4.1)

Definition. Suppose m and Y = {y0, y1, . . . , ym} ⊂ Sn−1 satisfy

yi · yj ≤ z for all i �= j, f(y0 · yi) ≥ 0 for 1 ≤ i ≤ m. (4.2)

Denote by µ the highest value of m such that the constraints in (4.2)
define a non-empty set of solutions (y0, . . . , ym).

Suppose 0 ≤ m ≤ µ. Let

h(Y ) = h(y0, y1, . . . , ym) := f(1) + f(y0 · y1) + . . .+ f(y0 · ym),

hm := max
Y

h(Y ), hmax := max {h0, h1, . . . , hµ}.

It is clear that Fi(X) ≤ hmax. Since (4.1), we have F (X) ≤ M hmax.
Combining this with (3.3), we obtain

Proposition. Suppose X ⊂ Sn−1 is a spherical z-code, |X| = M, and f

satisfies (3.2). If c0 = 1, then M ≤ hmax.

Note that h0 = f(1) =
∑
ck > 0, i.e. {1} ∈ A+. In the Delsarte

method A+ = {1}, µ = 0, hmax = h0 = f(1).
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The problem of evaluating of hmax in general case looks even more com-
plicated than the upper bound problem for spherical z-codes. Here we

consider this problem only for a very restrictive class of functions f(t):

f(t) is a monotone decreasing function on the interval [−1, t0],

f(t) ≤ 0 for t ∈ [t0, z], t0 < −z ≤ 0 (4.3)

.

Denote by φk for k > 0 the distance between yk and y∗0, where y∗0 = −y0

is the antipodal point to y0. Then y0 ·yk = − cosφk, and h(Y ) is represented
in the form:

h(Y ) = f(1) + f(− cosφ1) + . . .+ f(− cosφm). (4.4)

A subset C of Sn−1 is called (spherical) convex if it contains, with ev-

ery two nonantipodal points, the small arc of the great circle containing
them. If, in addition, C does not contain antipodal points, then C is called

strongly convex. The closure of a convex set is convex and is the intersec-
tion of closed hemispheres. If a subset Z of Sn−1 lies in a hemisphere, then

the convex hull of Z is well defined, and is the intersection of all convex
sets containing Z.

Suppose f(t) satisfies (4.3), then from (4.2) it follows thatQm = {y1, . . . , ym}
lies in the hemisphere of center y∗0. Denote by ∆m the convex hull of Qm

in Sn−1, ∆m = convQm.

Lemma 1. Suppose f satisfies (4.3) and Y = {y0, . . . , ym} ⊂ Sn−1 is

optimal, i.e. h(Y ) = hm and Y has the maximal number of φij = ψ (yi ·
yj = z). Then
(i) y∗0 ∈ ∆m and any yk ∈ Qm is a vertex of ∆m, i.e. ∆0

m = Qm;

(ii) if m ≤ n, then ∆m is a regular spherical simplex with edge length ψ;
(iii) if m > n, then for any yk ∈ Qm there are at least n− 1 distinct points

in Qm at the distance of ψ from yk.
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Proof. Let φ0 = cos−1 (−t0), then from the assumptions follow φk ≤ φ0 <
ψ. The function f(t) is monotone decreasing on [−1, t0]. By (4.4) it follows

that the function h(Y ) increases whenever φk decreases. This means that
for an optimal Y no yk ∈ Qm can be shifted towards y∗0.
(i) If y∗0 /∈ ∆m, then whole Qm can be shifted to y∗0. If φk = 0, then
yk = y∗0 and m = 1 because in the converse case φkj = φj < ψ. If φk > 0,

then consider the great (n − 2)-sphere Sk such that yk ∈ Sk, and Sk is
orthogonal to the arc y∗0yk. Suppose H0 is the hemisphere in Sn−1 such
that its boundary is Sk and H0 contains y∗0. Let us prove that Qm belongs

to H0. Note that this implies (i).
Consider the triangle y∗0ykyj and denote by γkj the angle ∠y∗0ykyj in this

triangle. From the law of cosines for spherical triangles follows

cosφj = cosφk cosφkj + sinφk sinφkj cos γkj

If yj does not belong to H0, then γkj > 900, and cos γkj < 0 (Fig. 1).

Therefore,
cosφj < cosφk cosφkj < cosφkj ≤ cosψ, then φj > ψ − a contradiction.
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Fig. 1 Fig. 2
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y∗0
y1 yn

K1

(ii), (iii). Note that if m ≤ n, then Qm ⊂ Sm−1 and (i) implies Y ⊂ Sm−1.
Hence, if � = min {m,n}, then Y ⊂ S�−1

Let dk = number of points in Qm at the distance of ψ from yk. Suppose
d1 < l − 1 and let after suitable permutations of labels we have

φ12 = . . . = φ1d1
= φ1d1+1 = ψ, φ1i > ψ for i = d1 + 2, . . . , m.

12



Consider K1 = conv {y1, y2, . . . , y�−1} and K2 = conv {y2, . . . , y�−1}. De-
note by Si, i = 1, 2, the great (� − i − 1)-sphere in S�−1 such that Si
contains Ki. Now we prove that y∗0 ∈ S2.

Assume the converse. If y∗0 /∈ K1, then y1 can be shifted towards y∗0
(rotation of y1 about S2 by a small angle, see Fig. 2) decreasing φ1 − a

contradiction. Thus, y∗0 ∈ K1. If K1 lies in the boundary ∂∆m of ∆m, then
from convexity of ∆m follows that K1 (with y∗0) can be rotated about S2

by a small angle towards other yk− a contradiction. When K1 does not
belong to ∂∆m (i.e. some of the edges of K1 are internal in ∆m), then

S1 separates yk, k ≥ �, into two subsets in accordance to which of the
hemispheres (bounded by S1) they belong. Take one of them and shift it

towards K1. This shift decreases φk− a contradiction.
We have y∗0 ∈ S2. In fact, we proved that y∗0 ∈ S̃, where S̃ is the great

(d1 − 1)-sphere that contains {y2, . . . , yd1+1}. Moreover, when k ≥ d1 + 2,

then dk = �− 1 or φik = ψ for 2 ≤ i ≤ d1 + 1. Thus any rotation about S̃
does not change φk and φ1i for i = 2, . . . , d1 + 1. Let us show that y1 can

be rotated so as to bring one of φ1k = ψ, k ≥ d1 + 2, that increases d1 and
contradicts to optimality of Y.

(ii) Since � = m it follows that in any case φik = ψ for 2 ≤ i ≤ d1 +1 < k.
It is clear that y1 can be rotated about S̃ so as to bring φ1k = ψ for
k ≥ d1 + 2 (see Fig. 3).

Fig. 3
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(iii) For simplicity we consider here only the case n ≤ 4.
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When n = 3, S2 consist of the one point y2, i.e. y∗0 = y2. Then φk ≥ ψ >
φ0− a contradiction. When n = 4, K2 is the spherical segment y2y3 and

y∗0 ∈ [y2, y3]. Since the sum of the angles y1y
∗
0y2 and y1y

∗
0y3 equals 180◦,

then one of them (suppose the first one) is not exceed 90◦. Note that for

y2 there is yk, k �= 1, 3, at the distance of ψ from y2. Then y1 can be
rotated about S2 towards yk so as to bring φ1k = ψ. Indeed, consider an

arrangement of {y1, y2, y3, yk} in S3 such that it gives the minimal distance
between y1 and yk. Then y1 lies in the great 2-sphere defined by {y2, y3, yk}
(see Fig. 4). It is easy to see that dist (y1, yk) < dist (y∗0, yk). Since
dist (y∗0, yk) = φk ≤ φ0 < ψ, we obtain dist (y1, yk) < ψ.
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Suppose f satisfies (4.3). Then the function

h(y0, y1) = f(1) + f(−y0 · y1)

attains its maximum at y1 = y∗0. Therefore,

h1 = f(1) + f(−1).

Denote by

Λm = {y : y ∈ ∆m, y · yk ≥ −t0, 1 ≤ k ≤ m}.
Note that Λm is a convex set in Sn−1. Let

Hm(y) = f(1) + f(−y · y1) + . . .+ f(−y · ym).

Then hm is the maximum of Hm(y) on Λm. Now we have

h0 = f(1), h1 = f(1) + f(−1),

hm = max
y∈Λm

Hm(y), Λm ⊂ ∆m ⊂ Sn−1, 2 ≤ m ≤ µ. (4.5)
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Define the function ρ(z, φ0) in z, φ0 by the equation:

cos ρ(z, φ0) =
z − cos2 φ0

sin2 φ0
.

Lemma 2. Suppose Y = {y0, y1, . . . , ym} ⊂ Sn−1, where φij ≥ ψ
for i �= j; φi = cos−1 (y∗0 · yi) ≤ φ0 for 1 ≤ i ≤ m; and φ0 ≤ ψ,

cosψ = z ≥ 0. If ρ(z, φ0) > ϕn−1(M), then m < M.

Proof. Let q(α) = (z−cosα cosβ)/ sinα, then q′(α) = (cosβ−z cosα)/ sin2 α.

From this follows, if 0 < α, β ≤ φ0, then cosβ ≥ z; so then q′(α) ≥ 0,
and q(α) ≤ q(φ0) (∗).

Let Π be the projection of {y1, . . . , ym} onto equator Sn−2 from pole y∗0.
Then the distances γij between points of Π in Sn−2 can not be less than

ρ(z, φ0). Indeed, combining (∗) and the inequality cosφij ≤ z, we get

cos γij =
cosφij − cosφi cosφj

sinφi sinφj
≤ z − cos2 φ0

sin2 φ0
= cos ρ(z, φ0).

Thus γij ≥ ρ(z, φ0). From other side, Π ⊂ Sn−2, then min
i �=j

γij ≤ ϕn−1(m),

so then ρ(z, φ0) ≤ ϕn−1(m).

Corollary 1. Suppose f(t) satisfies (4.3).
If n = 4, z = 1/2, and t0 ≤ −0.6058, then µ ≤ 6.

Proof. Since cosφ0 = −t0 ≥ 0.6058, then ρ(1/2, φ0) ≥ 77.8707...◦ > ϕ3(7).
Lemma 2 implies m < 7, i.e. µ = max {m} ≤ 6.
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5. τ4 = 24

For n = 4, z = cos 60◦ = 1/2 we apply this extension of Delsarte’s

method with

f(t) = 53.76t9−107.52t7+70.56t5+16.384t4−9.832t3−4.128t2−0.434t−0.016

The expansion of f in terms of Uk = G
(4)
k is

f = U0 + 2U1 + 6.12U2 + 3.484U3 + 5.12U4 + 1.05U9

This polynomial f has two roots: t0 = −0.60794... and t = 1/2 on [−1, 1],
f(t) ≤ 0 for t ∈ [t0, 1/2], and f is a monotone decreasing function on the
interval [−1, t0]. The last property holds because there are no zeros of the
derivative f ′(t) on [−1, t0]. Therefore, f satisfies (4.3) for z = 1/2.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

0

1

2

3

4

5

6

−1

Fig. 5. The graph of the function f(t)

Remark. The polynomial f was found by using the algorithm in Appendix
I. This algorithm for n = 4, z = 1/2, d = 9, N = 2000, t0 = −0.6058 gives

E = 24.7895. For the polynomial f the coefficients ck were changed to
“better looking” ones with E = 24.8644.

(Here and below numbers are shown to 4 decimal places.)
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We have t0 < −0.6058. Then Corollary 1 gives µ ≤ 6. Consider all
m ≤ 6.

h0 = f(1) = 18.774, h1 = f(1) + f(−1) = 24.48.

When m = 2, Lemma 1 implies that ∆2 is an arc (spherical segment) y1y2

with length ψ = 60◦. We obviously have φ1 + φ2 = 60◦. Then (4.4) implies

h(Y ) = H̃(φ1) := f(1) + f(− cosφ1) + f(− cos (60◦ − φ1)).

From (4.5) it follows that h2 is the maximum of H̃(φ1) on the interval

Λ2 = [ψ0, φ0], where

φ0 = cos−1 (−t0) = 52.5588◦, ψ0 = 60◦ − φ0.

The graph of the function H̃(φ1) (see Fig. 6) shows that this function
achieves its maximum at φ1 = 30◦. It can be proven by the following
method.

Fig. 6. The graph of the function H̃(φ1)

0◦ 10◦ 20◦ 30◦ 40◦ 60◦
� �
ψ0 φ0

24.4

24.5

24.6

24.7

24.8

24.9

Let α = φ1 − 30◦, s = cosα, and Φ(s) := H̃(φ1). It is easy to see that
Φ(s) is a polynomial of degree 9 in the variable s. The inequality φ1 ≤ φ0

implies s ≥ s0 = cos (φ0 − 30◦). Therefore, h2 is the maximum of Φ(s) on
[s0, 1].

The calculations show that there are no critical points of the function

Φ(s) on (s0, 1). In other words, there are no roots of the polynomial Φ′(s)
on (s0, 1), then Φ(s) achieves its maximum at s = s0 or at s = 1. Since

Φ(1) > Φ(s0), then

h2 = Φ(1) = H̃(30◦) = f(1) + 2f(− cos 30◦) = 24.8644.
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The cases m = 3, 4, 5, 6 are considered below. Corollaries 2, 3 and
Lemmas 6, 7 give that

h2 > h3 = 24.8345 > h4 = 24.8180 > h5 = 24.6856, h6 < h2.

Thus hmax = h2.

Theorem 1. τ4 = 24

Proof. Let X be a spherical 1/2-code in S3 with M = τ4 points. The

polynomial f is such that hmax < 25, then combining this and Proposition,
we get
τ4 ≤ hmax < 25. Recall that τ4 ≥ 24. Consequently, τ4 = 24.
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The thirteen spheres problem: a new proof

Theorem 2. τ3 = 12

Proof. Let

f(t) =
2431

80
t9 − 1287

20
t7 +

18333

400
t5 +

343

40
t4 − 83

10
t3 − 213

100
t2 +

t

10
− 1

200
.

The expansion of f in terms of Pk = G
(3)
k is

f = P0 + 1.6P1 + 3.48P2 + 1.65P3 + 1.96P4 + 0.1P5 + 0.32P9.

The function f(t) is a monotone decreasing function on the interval
[−1, t0], f(t0) = 0, f(t) < 0 for t0 < t ≤ 1/2, and

t0 = −0.5907, φ0 = cos−1 (−t0) = 53.7940◦.

Since ρ(1/2, φ0) = 76.5821◦ and ϕ2(5) = 72◦, we have m < 5 (Lemma

2).

h0 = f(1) = 10.11, h1 = f(1) + f(−1) = 12.88.

Φ(s) achieves its maximum on the interval [s0, 1] at s = 1. Thus

h2 = f(1) + 2f(− cos 30◦) = 12.8749 < h1.

Corollary 2 and Lemma 5 give that

h3 = 12.8721 < h1, h4 = 12.4849 < h1.

Therefore, all hm ≤ h1. Thus 12 ≤ τ3 ≤ hmax = h1 = 12.88 < 13.
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6. On calculations of hm for m ≤ n

From here on f(t) = f0 + f1 t+ . . .+ fd t
d be a real polynomial of degree

d that satisfies (4.3).
When m ≤ n, Lemma 1 (ii) implies that ∆m is a regular (m − 1)-

dimensional spherical simplex. Let the vertices of the simplex ∆m ⊂ Sm−1

have coordinates

y1 = (a+ b, a, . . . , a), y2 = (a, a+ b, . . . , a), . . . , ym = (a, a, . . . , a+ b);

where a = (
√

1 + (m− 1)z −√
1 − z )/m, b =

√
1 − z. Suppose y ∈ Rm

has coordinates (u1, . . . , um), then (4.5) implies

hm = max
u1,...,um−1

H̃m(u1, . . . , um−1), where

H̃m(u1, . . . , um−1) = Hm(u1, . . . , um−1, um), um =
√

1 − u2
1 − . . .− u2

m−1 ,

subject to tk = y·yk = a(u1+. . .+um)+buk ≥ −t0 for 1 ≤ k ≤ m. (6.1)

For the proofs of Theorems 1 and 2 we need to consider the cases n = 3,
m = 3, and n = 4, m = 3, 4. For m = 3 and 4 ∆m are an a regular triangle

and a regular tetrahedron, respectively, so hm can be found by (6.1).
The equality (6.1) show that hm is the maximum of the function H̃m.

We have a classical computational problem: to find the maximum of a
function in m − 1 variables. Numerical Analysis methods can be used
for calculation of this maximum. In the first version of this paper (see

short communication [?]) the Nelder-Mead simplex method (see [?, ?])
was applied. For the polynomial f(t) from Section 4 the calculations give

that h3 = 24.8345 and h4 = 24.8180, i.e. h4 < h3 < h2. For f from Section
5 this method gives h3 = 12.8721.

Form ≤ n the values hm can be calculated another way. Let us show that

the problem of calculations of hm for m ≤ 4 can be reduced to calculations
of zeros of some polynomials in one variable. (It is important that these
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calculations can be independently verified. If you have approximate values
for all (real and complex) roots of a polynomial , then you can check the

existence of these roots by simple computations.)
Let us consider Hm(y) as the symmetric polynomial Fm(t1, . . . , tm) in

the variables t1, . . . , tm : Fm(t1, . . . , tm) = f(1) + f(−t1) + . . . + f(−tm).
Denote by sk = sk(t1, . . . , tm) the power sum tk1 + . . .+ tkm. Then

Fm(t1, . . . , tm) = Ψm(s1, . . . , sd) = f(1) +mf0 − f1 s1 + . . .+ (−1)dfd sd.

The equality u2
1 + . . .+ u2

m = 1 in (6.1) holds if and only if

s2 = σ(s1) :=
z

(m− 1)z + 1
s2
1 + 1 − z. (6.2)

Any symmetric polynomial in m variables can be expressed as a poly-
nomial of s1, . . . , sm. Therefore, in the case k > m the power sum sk is

Rk(s1, . . . , sm). Combining this with (6.2), we get

Ψm(s1, σ(s1), s3, . . . , sd) = Φm(s1, s3, . . . , sm).

Therefore, we have

hm = maxΦm(s1, s3, . . . , sm), (s1, s3, . . . , sm) ∈ Dm ⊂ Rm−1,

where Dm is the domain in Rm−1 defined by the constraints ti ≥ −t0 and
(6.2).

Let us show now how to determine Dm for m > 2. The equation (6.2)

defines the ellipsoid E : s2 = σ(s1) in space {t1, . . . , tm}. Then s1 = t1 +
. . . + tm attains its maximum on E at the point with t1 = t2 = . . . = tm,

and s1 achieves its minimum on E
⋂{ti ≥ −t0} at the point with t2 =

. . . = tm = −t0. From this follows w1 ≤ s1 ≤ w2, where

w1 =

√
(p− t20) (p− z2) − z t0

p
− (m− 1) t0, p =

1 + (m− 2) z

m− 1
,

w2 =
√
m (m− 1) z +m.
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The equation s1 = ω gives the hyperplane, and the equation s2 = σ(ω)
gives the (m − 1)-sphere in space: {(t1, . . . , tm)}. Denote by S(ω) the

(m − 2)-sphere that is the intersection of these hyperplane and sphere.
Let lk(ω) be the minimum of sk on S(ω)

⋂{ti ≥ −t0}, and vk(ω) is its
maximum. Now we have

hm = max
s1

max
s3

. . .max
sm

Φm(s1, s3, . . . , sm), where

w1 ≤ s1 ≤ w2, lk(s1) ≤ sk ≤ vk(s1), k = 3, . . . , m.

For the polynomials f from Sections 4 and 5 we can give more details
about calculations of hm for m = 3, 4.

Let us consider the case m = 3 with d = 9. In this case Fω(s3) =
Φ3(ω, s3) is a polynomial of degree 3 in the variable s3.

Lemma 3. Let f be a 9th degree polynomial f(t) = f0+f1t+ . . .+f9t
9 such

that f9 > 0, f6 = f8 = 0, and f7 > −15f9/7. If F ′
ω(s) ≤ 0 at s = l3(ω),

then the function Fω(s) achieves its maximum on the interval [l3(ω), v3(ω)]
at s = l3(ω).

Proof. The expansion of s9 in terms of si1s
j
2s
k
3, i+ 2j + 3k = 9, is

s9 =
1

9
s3
3 + s2

3(
2

3
s3
1 + s2s1) + s3(

3

8
s3
2 −

3

8
s2
2s

2
1 −

7

8
s2s

4
1 +

5

24
s6
1) + R(s1, s2).

The coefficient of s2
3s1 in s7 equals 7/9. Thus

Fω(s) = −s3 f9/9 − s2 (f9 ω σ(ω) + 2f9 ω
3/3 − 7f7 ω/9) + sR1(ω) +R0(ω).

Fω(s) is a cubic polynomial with negative coefficient of s3. Then Fω(s) is
a concave function for s > r, where r : F ′′

ω (r) = 0. Therefore, if r < l3(ω),

then Fω(s) is a concave function on the interval [l3(ω), v3(ω)]. r < l3(ω) iff

B(ω) := 3l3(ω) + 6ω3 + 9ω σ(ω) > −7ωf7/f9.

This inequality holds for t0 < −z ≤ 0. Indeed,

ω ≥ w1 ≥ 1 + 2z, σ (ω) ≥ 1, l3(ω) > 0;
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so then
B(ω) > 15ω > −7ωf7/f9.

The inequality F ′
ω(l3(ω)) ≤ 0 implies that Fω(s) is a decreasing function

on the interval [l3(ω), v3(ω)].

The polynomials f from Sections 4 and 5 satisfy the assumptions in

Lemma 3. Then Φ3(ω, s) attains its maximum at the point s = l3(ω), i.e.
at the point with t1 = t2 ≥ t3, or with t1 ≥ t2 ≥ t3 = −t0. If t1 = t2 ≥
t3, then p(ω) = Φ3(ω, l3(ω)) is a polynomial in ω. This polynomial is a
decreasing function in the variable ω on the interval t3 ≥ −t0. Therefore,
p(ω) achieves its maximum on this interval at the point with t3 = −t0.
The calculations show that for f from Section 4 h3 = max p(ω) = 24.8345,
when φ3 = φ0, φ1 = φ2 = 30.0715◦, and for f from Section 5 h3 = 12.8721,

when φ3 = φ0, φ1 = φ2 = 30.0134◦.

Corollary 2. Let f be the polynomial from Section 4 (Section 5), then
h3 = 24.8345 (h3 = 12.8721).

Consider the function Fω(s3, s4) = Φ4(ω, s3, s4) on S(ω). Let qi ∈ S(ω)

and q1 : t1 = t2 > t3 = t4, q2 : t1 = t2 = t3 > t4, and q3 : t1 > t2 = t3 =
t4.

Lemma 4. Let f be a 9th degree polynomial f(t) =
∑
fit

i. If f9 > 0 and

f6 = f8 = 0, then the function Fω(s3, s4) achieves its maximum on S(ω)
with ω > 1 at one of the points (s3(qi), s4(qi)), i = 1, 2, 3.

Proof. The expansion of s9 in terms of si1s
j
2s
k
3s
l
4 is

s9 =
9

16
s2
4s1+

1

9
s3
3−

1

3
s2
3s

3
1+

3

4
s4s3s1+

3

8
s4s2s

3
1−

3

8
s3s

2
2s

2
1−

1

24
s3s

6
1+R(s1, s2).

The coefficient of s2
3s1 in s7 equals 0. We have f6 = f8 = 0, then

Fω(s3, s4) = −f9 s9 + . . . = −f9(s
3
3/9 − s2

3 ω
3/3) + . . . Therefore,

F33 =
∂2Fω(s3, s4)

∂2s3
= −f9(

2

3
s3 − 2

3
ω3) =

2f9

3
(ω3 − s3).
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If Fω(s3, s4) has its maximum on S(ω) at the point x, and x is not a critical
point of s3 on S(ω), then F33 ≤ 0. From other side, for all ti ∈ [0, 1] and

s1 = ω > 1 we have s3 ≤ ω < ω3, so then F33 > 0. The function s3 on
S(ω) (up to permutation of labels) has critical points at qi, i = 1, 2, 3.

Corollary 3. Let f be the polynomial from Section 4. Then h4 = 24.8180.

Proof. By direct calculations it can be shown that
Fω(s3(q1), s4(q1)) > Fω(s3(qi), s4(qi)) for i = 2, 3. Then Lemma 4 implies

h4 = max p(ω), where p(ω) = Fω(s3(q1), s4(q1)) = Φ4(ω, s3(q1), s4(q1)).
The polynomial p(ω) attains its maximum h4 = 24.8180 at the point

with φ1 = φ2 = 30.2310◦, φ3 = φ4 = 51.6765◦.
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7. On calculations of hm for m > n

When m > n, Qm is not uniquely (up to isometry) defined by Lemma
1 (iii). For the proofs of Theorem 1 and Theorem 2 we need to consider

the cases n = 4, m = 5, 6 and n = 3, m = 4. In these cases ∆m are rather
simple.

Let Γm denotes the graph of the edges of ∆m with length ψ. From Lemma

1 it follows that the degree of any vertex of Γm is equal to or greater than
n− 1.

For instance, let n = 3 and m = 4. Then Lemma 1 implies that ∆4 ⊂ S2

is a spherical equilateral quadrangle (rhomb) with edge length ψ. If its

smallest diagonal has length α, then ψ ≤ α ≤ γ, where γ is the length
of the diagonal of the regular quadrangle with edge length ψ, cos γ =
2 cosψ − 1 (Fig. 7). Denote this rhomb by ∆4(α) and its vertices by

yk(α), k = 1, 2, 3, 4.
Consider an 1-parametric family of ∆4(α), ψ ≤ α ≤ γ, on S2. Let

H4(y, α) = f(1) + f(−y · y1(α)) + . . .+ f(−y · y4(α)). Then from Definition
and Lemma 1 follow

h4 = max
y, α

H4(y, α), y ∈ S2, y · yk(α) ≥ −t0, ψ ≤ α ≤ γ (7.1)

For the polynomial f from Section 5 it can be proven numerically that

Lemma 5. The function H4(y, α) attains its maximum h4 = 12.4849 at
α = 72.4112◦, and y with φ1 = φ2 = φ3 = φ0, φ4 = 18.6172◦.
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When n = 4, m = 5, we also have an 1-parametric family as in (7.1).
The degree of any vertex of Γ5 is not less than 3. This implies that at least

one vertex of Γ5 has degree 4. Indeed, if all vertices of Γ5 are of degree 3,
then the sum of the degrees equals 15, i.e. is not an even number. There

exists only one type of Γ5 with these conditions (Fig. 8). Therefore, we
have the 1-parametric family ∆5(α) on S3. Let H5(y, α) = f(1) + f(−y ·
y1(α)) + . . .+ f(−y · y5(α)). Then

h5 = max
y,α

H5(y, α), y ∈ S3, y · yk(α) ≥ −t0, 1 ≤ k ≤ 5, ψ ≤ α ≤ γ

(7.2)
Now we consider this case for the polynomial f(t) from Section 4, where

z = 1/2 and t0 = −0.60794 (f(t0) = 0). Here we have ψ = 60◦ and γ = 90◦,
i.e. 60◦ ≤ α ≤ 90◦.

Let the vertices of ∆5(α) ⊂ S3 have coordinates

y1(α) = (0, 0, 0, 1), y2(α) = (p(α), 0, q(α), 1/2), y3(α) = (0, r(α), s(α), 1/2),

y4(α) = (−p(α), 0, q(α), 1/2), y5(α) = (0,−r(α), s(α), 1/2), where

p(α) =
√

(1 − a)/2 , q(α) =
√

(2a+ 1)/4 , r(α) =
√

(3a+ 1)/(4a+ 2) ,

s(α) = 1/
√

8a+ 4 , and a = cosα.

If y ∈ S3 has coordinates (u1, u2, u3, u4), then u4 =
√

1 − u2
1 − u3

2 − u2
3 .

Let H̃(u1, u2, u3, α) = H5(y, α), 60◦ ≤ α ≤ 90◦, then consider the following
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optimization problem for the variables u1, u2, u3, α:

maximize H̃(u1, u2, u3, α) subject to

60◦ ≤ α ≤ 90◦, y · yk(α) ≥ −t0, k = 1, 2, 3, 4, 5. (7.3)

For the polynomial f from Section 4 this optimization problem was

solved numerically by using the Nelder-Mead simplex method (see [?, ?]).

Lemma 6. For the polynomial f from Section 4 the function H̃(u1, u2, u3, α)
achieves its maximum h5 = 24.6856 at α = 60◦ and y with φ1 = 42.1569◦,
φ2 = φ4 = 32.3025◦, φ3 = φ5 = φ0.

Let us briefly explain how the optimization problem (7.3) can be solved

without using numerical methods. The equation u4 = ω gives the hyper-
plane (3-space) in R4. Let S(ω) is the intersection of this hyperplane and

S3. Note that S(ω) is a 2-sphere. For 1 > ω ≥ 1/2 the intersection of S(ω)
and ∆5(α) gives the rhomb ∆(ω, α).

Consider the function H̃(u1, u2, u3, α) on ∆(ω, α). H̃(u1, u2, u3, α) is a

polynomial of degree d = 9 in the variable u3. This function is a mono-
tone decreasing on the interval u2 = const u1 in ∆(ω, α) and achieves its

minimum at the center yc(ω, α) of ∆(ω, α). From this follows that H̃ has
its maximum on ∆(ω, α) at the point with the maximal u3. Note that the

equation u3 = const gives the circle of center yc(ω, α) in S(ω). The func-
tion H̃ achieves its maximum on this circle when (i) u2 = 0, α = 60◦ or

(ii) u1 = u2, α = 90◦. The constraints in (7.3) determine u3 and give that
the maximum achieves in the case (i). Thus (7.3) can be reduced to an
polynomial optimization problem in one variable.

For the last case (n = 4, m = 6) we have found a simpler proof that
h6 < h2. However, let us still consider this case briefly. There are two

types of Γ6 (Fig. 9). If Γ6 contains graph of Type I, then it could be
proven that Λ6 = ∅. If Γ6 is of Type II, then this defines the 3-parametric
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family ∆6(α, β, γ) on S3. Thus

h6 = max
y,α,β,γ

H6(y, α, β, γ), y ∈ S3, y · yk(α, β, γ) ≥ −t0.
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For the polynomial f from Section 4 the calculations show thatH6(y, α, β, γ)

attains its maximum h6 = 22.5205 at α = β = γ = 60◦, when ∆6(α, β, γ)
is a regular spherical octahedron.

Now let us prove that

Lemma 7. For the polynomial f from Section 4 h6 < h2.

Proof. In the converse case there exists a set Y6 = {y0, y1, . . . , y6} such that

h(Y6) = f(1) + f(− cosφ1) + . . .+ f(− cosφ6) ≥ h2.

If Y5 = {y0, y1, . . . , y5}, then h(Y5) ≤ h5. Suppose φ1 ≤ . . . ≤ φ5 ≤ φ6,

whence
f(− cosφ6) ≥ h2 − h5 = 0.1788.

Therefore,

φ6 ≤ α0 = cos−1 (−f−1(0.1788)) = 48.3787◦.

This implies that all φk ≤ α0.
But φ6 ≥ 45◦. That can be proven as Corollary 1. We have

ϕ3(6) = 90◦ (see [?]), ρ(1/2, 45◦) = 90◦.

29



By assumption φk ≤ φ6 for 1 ≤ k ≤ 6. If φ6 < 45◦, then ρ(1/2, φ6) >
90◦. This is in contradiction with Lemma 2.

Actually, we have the same case as for m = 5 (see (7.2)).

h(Y5) ≤ h5(α0) = max
y,α

H5(y, α), y ∈ S3, y·yk(α) ≥ cosα0, γ0 ≤ α ≤ 90◦,

where cos 2α0 = − cos γ0/(1 + 2 cos γ0). In the same way as in the case
m = 5, where t0 is replaced by − cosα0, we obtain h5(α0) = 23.5389.

Therefore,

h(Y6) = h(Y5)+f(− cosφ6) ≤ h5(α0)+f(− cos 45◦) = 23.5389+0.4533 < h2.

This contradiction concludes the proof.
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8. Concluding remarks

The algorithm in Appendix I can be applied to other dimensions and
spherical z-codes. If t0 = −1, then the algorithm gives the Delsarte

method. E is an estimation of hmax in this algorithm.
Direct application of the method developed in this paper, presumably

could lead to some improvements in the upper bounds on kissing numbers

in dimensions 9, 10, 16, 17, 18 given in [C-S]. (“Presumably” because the
equality hmax = E is not proven yet.)

In 9 and 10 dimensions Table 1.5 gives:
306 ≤ τ9 ≤ 380, 500 ≤ τ10 ≤ 595.

The algorithm gives:
n = 9 : deg f = 11, E = h1 = 367.8619, t0 = −0.57;
n = 10 : deg f = 11, E = h1 = 570.5240, t0 = −0.586.

For these dimensions there is a good chance to prove that τ9 ≤ 367, τ10 ≤
570.

From the equality τ3 = 12 follows ϕ3(13) < 60◦. The method gives
ϕ3(13) < 59.4◦ (deg f = 11). The lower bound on ϕ3(13) is 57.1367◦ [FeT].

Therefore, we have 57.1367◦ ≤ ϕ3(13) < 59.4◦.
The method gives ϕ4(25) < 59.81◦, ϕ4(24) < 60.5◦. (This is theorem

that can be proven by the same method as Theorem 1.) That improve the
bounds:

ϕ4(25) < 60.79◦, ϕ4(24) < 61.65◦ [Lev] (cf. [Bo]); ϕ4(24) < 61.47◦ [Bo];

ϕ4(25) < 60.5◦, ϕ4(24) < 61.41◦ [AB2].

Now in these cases we have

57.4988◦ < ϕ4(25) < 59.81◦, 60◦ ≤ ϕ4(24) < 60.5◦.
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Appendix I. Algorithm for f .

Let us have a polynomial f represented in the form f(t) = 1+
d∑
k=1

ckG
(n)
k (t).

We have the following constraints for f in (3.3): (C1) ck ≥ 0, 1 ≤ k ≤ d;
(C2) f(a) > f(b) for −1 ≤ a < b ≤ t0; (C3) f(t) ≤ 0 for t0 ≤ t ≤ z.

When m ≤ n, hm = maxHm(y), y ∈ Λm. We do not know y where Hm

attains its maximum, so for evaluation of hm let us use yc − the center of

∆m. All vertices yk of ∆m are at the distance of Rm from yc, where
cosRm =

√
(1 + (m− 1)z)/m.

When m = 2n − 2, ∆m presumably is a regular (n − 1)-dimensional
spherical octahedron. (It is not proven yet.) In this case cosRm =

√
z.

Let In = {1, . . . , n}⋃{2n− 2}, m ∈ In, bm = − cosRm, whence

Hm(yc) = f(1) + mf(bm). If F0 is such that Hm(y) ≤ E = F0 + f(1),
then (C4) f(bm) ≤ F0/m, m ∈ In. A polynomial f that satisfies (C1-C4)

and gives the minimal E (note that E = F0 + 1 + c1 + . . .+ cd = F0 + f(1)
will become a lower estimate of hmax) can be found by the following

Algorithm.

Input: n, z, t0, d, N.
Output: c1, . . . , cd, F0, E.

First replace (C2) and (C3) by a finite set of inequalities at the points
aj = −1 + εj, 0 ≤ j ≤ N, ε = (1 + z)/N :

Second use linear programming to find F0, c1, . . . , cd so as to minimize

E − 1 = F0 +
d∑

k=1
ck subject to the constraints

ck ≥ 0, 1 ≤ k ≤ d;
d∑
k=1

ckG
(n)
k (aj) ≥

d∑
k=1

ckG
(n)
k (aj+1), aj ∈ [−1, t0];

1+
d∑
k=1

ckG
(n)
k (aj) ≤ 0, aj ∈ [t0, z]; 1+

d∑
k=1

ckG
(n)
k (bm) ≤ F0/m, m ∈ In.
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Appendix II. On another proof.
Here is presented a sketch of another proof of Theorem 1. This was my

first proof. The proof in Section 4 was found while a paper with the first

proof was in process.
Suppose X is a spherical 1/2-code in S3 with size |X| = τ4. Let us prove

that |X| < 25. Assume the converse, then |X| = 25.

Step 1. The graph Γ25.

Let us consider the graph Γ25 on the sphere S3 formed by joing every pair
of X whose distance apart is less than 72◦. Danzer proved that ϕ3(11) =

ϕ3(12), where cosϕ3(12) = 1/
√

5. From other side, we have ρ(1/2, 72◦) =
ϕ3(11). Similarly, as in Lemma 2, it could be proven that the degree di of

any vertex xi of Γ25 is at most 10, i.e. di ≤ 10.

Step 2. Constraints for Γ25.
Let f = c0 + c1U1 + . . .+ c9U9, where c0 = 1.1797; c1 = 3.7875;

c2 = 5.6792; c3 = 5.4997; c4 = 3.4008; c5 = 1.2302; c6 = c7 = 0;
c8 = 0.0917; c9 = 0.1836. Here as above shown to 4 decimal places.

The function f(t) satisfies the following properties:
(i) f(t) ≤ 0 if t ∈ [−1, t0], f(t0) = 0, where t0 = cos 72◦ = (

√
5 − 1)/4 =

0.3090;

(ii) f(t) is a monotone increasing function on the interval [t0, 1/2], f(1/2) =
1.

From (2.2) and (2.4) follows
∑
Fi(X) ≥ 625c0. Let fi = Fi(X) − f(1).

Then ∑
fi ≥ 625c0 − 25f(1) > 211 (C1)

From (i), (ii) follow fi ≤ di. Therefore, fi > 8 if di = 9 or di = 10.

Step 3. If di = 10, then fi < 8.
Let r10 is defined by the equation: ρ(1/2, r10) = ϕ3(10) , where

ϕ3(10) = 66.1468◦ [?]. Denote by S10 the sphere in S3 of center xi and
radius r10. Then at most 9 points xj ∈ X, j �= i can lie inside S10.
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Let y1, . . . , y10 are neighbors of xi in Γ25. Then any yj is a vertex of
∆10 = conv{y1, . . . , y10}. Suppose fi ≥ 8. Then there are at most two

vertices of ∆10 (let it be y1 and y2) that can lie outside of S10. By detailed
consideration of the cases (y1 and y2 are neighbors in ∆10, only y1 lies

outside of S10) it can be proven that yj can be shifted in such way that all
of them lie inside S10.

Step 4. Constraints for Q.
Let Q = {xi ∈ X : fi > 8}. If fi > 8, then di = 9. From C1 follows

|Q| = m ≥ 12.
Let h = c0 + c1U1 + . . .+ c5U5, where c0 = 0.4269; c1 = 1.1462;

c2 = 0.8454; c3 = c4 = 0; c5 = 0.1654. Then h(t) ≤ 0 for
t ∈ [−1,−1/8], h(−1/8) = 0; h(t) is a monotone increasing function on
the interval [−1/8, 1/2], and h(1/2) = 1.

Let hi = Fi(Q) − h(1). In the same way as in Step 2 we have∑
hi ≥ c0m

2 − h(1)m = 0.4269m2 − 2.5839m (C2)

Step 5. There exists xi ∈ Q with fi + hi > 11.4559.
Up to permutations of labels we have Q = {x1, . . . , xm}. If wi = fi− 8,

then (C1) implies
∑
wi > 11. For i > m we have wi ≤ 0, thus w1 + . . .+

wm > 11. If ui = hi+wi, then from (C2) follows
∑
ui > c0m

2−h(1)m+11.

This implies that min
m≥12

max
i
ui > 3.4559.

Now we show that there are no points as in Step 5. In the converse case
there exists Y = {y0, y1, . . . , y9, . . . , yn} ⊂ S3, where for all i

ti = cosφi = y0 · yi ≤ 1/2; ti > cos 72◦ for 1 ≤ i ≤ 9; and cos 72◦ ≥ ti >
−1/8 for 10 ≤ i ≤ n. Furthermore, f0 + h0 > 11.4559, where
f0 = f(t1) + . . . + f(t9) > 8, h0 = h(tk) + . . . + h(tn). Here di = 9 for

i = 0, k, . . . , n. We assume also that Y is an optimal set (as in Section 3),
i.e. no yi that can be shifted for increasing of f0 + h0.

We did not find short (analytical) prove for this contradiction (Steps 6,
7) and applied a geometrical approach.
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Step 6. n < 12.
Let ∆9 = conv {y1, . . . , y9}. It is easy to see that each yi is a vertex

of ∆9. The graph of edges G9 of ∆9 is uniquely defined by inequalities:
f0 > 8,

ti > cos 72◦. (If all faces of ∆9 are triangles, then G9 has 5 vertices of
degree 4 and 4 vertices of degree 5.) Then the subgraph Γ9 of G9 with

edges lengths are less than 72◦ can be obtained from G9 by removing 0, 1,
or 2 edges.

Suppose that converse holds: n ≥ 12. We have ∆9 and three points
y10, y11,
y12 at the distances are less than cos−1 (−1/8) from y0. If Y is an optimal,

then for any yi, i > 9, there are at least three points of Y at the distances
60◦ from yi. From detailed analysis of the types of Γ9 and locations of yi
follow that it is impossible.

Step 7. n ≥ 12.
We have 8 < f0 ≤ 9, and f0 + h0 > 11.4559. (∗).

n �= 9. From (∗) follows k ≤ 7, i.e. among of yi, 1 ≤ i ≤ 9, there are at
least three points with di = 9 and fi > 8. It is not hard to prove, that

these points can be at most two. (This prove based on the analysis of Γ9

as in Step 6.)

n �= 10. In the same way as in Step 3, (∗) implies that yi can be shifted
inside the sphere of center y0 and radius r10.

n �= 11. Similarly, yi can be shifted inside the sphere of center y0 and
radius r11 = 72◦.

The last contradiction concludes the proof of Theorem 1.
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