Periodicity and Sphere Packings in Hyperbolic Space

Lewis Bowen

November 15, 2003

1

Euclidean Space

- A sphere packing is a collection of nonoverlapping congruent balls in Euclidean space \mathbb{E}^n .
- What are the densest sphere packings?

 $density(P) = \lim_{R \to \infty} density(P \text{ in a radius-}R \text{ ball centered at } p)$

Well-Posed

- density(P) is independent of origin.
- The maximum density is attained.
- The maximum density is independent of radius.

Periodicity

• A <u>periodic</u> packing P is one whose symmetry group $G_P < Isom(\mathbb{E}^n)$ is cocompact.

Figure 1: maximum density = sup density over periodic packings.

• Is this attained by periodic packings? (not known, except in dim 2,3).

Hyperbolic Space \mathbb{H}^n

Figure 2: A densest circle packing in the hyperbolic plane (pic by Ken Stephenson)

Is the sphere-packing problem well-posed in \mathbb{H}^n ?

Figure 3: Density depends on origin

• Do densest packings exist? (more on this later).

Figure 4: "maximum density" depends on radius (pics by Don Hatch).

Figure 5: K. Böröczky's packing

Periodic Packings

- A periodic packing P is one whose symmetry group G_P < Isom(ℍⁿ) is cofinite.
- For a periodic packing, density exists independent of origin.
- For most radii r, there are no densest periodic packings by balls of radius r (Charles Radin and I).

Limits of Periodic Packings ?

- Naive approach fails.
- $\mu_P :=$ the uniform (probability) distribution on congruent copies of the packing P.
- $\{\mu_P\}_P$ has a limit point.
- "density" exists and has continuity properties.

Measures

(joint with Charles Radin, inspired by Oded Schramm)

- $\mathcal{P}_r :=$ space of radius *r*-sphere packings;
- $Isom(\mathbb{H}^n)$ acts on \mathcal{P}_r in the natural way;
- $M_r :=$ space of probability measures on \mathcal{P}_r invariant under $Isom(\mathbb{H}^n)$;
- For $\mu \in M_r$, $density(\mu) := \mu(\{ \text{ packings } P \text{ that cover the origin } \})$.

Tools

- μ is ergodic if it is not a nontrivial convex sum of two measures in M_r .
- If μ is ergodic then μ -almost all packings P have dense orbit in $supp(\mu)$.
- If μ is ergodic then for μ -almost any packing P, density(P) exists independent of origin and equals $density(\mu)$.
- Ergodic theory results rely on work of A. Nevo and E. Stein.

More Tools

- M_r is compact in the weak* topology.
- $density: M_r \to [0,1]$ is continuous.
- Let $D(r) = max_{\mu \in M_r} density(\mu)$. "optimal density function"
- $\mu \in M_r$, $density(\mu) = D(r) \leftrightarrow \mu$ is "optimally dense".
- An "optimally dense packing" P is a packing in the support of an optimally dense measure such that $density(P) = density(\mu)$ for every choice of origin.

Questions

- 1. What are the optimally dense measures??
- 2. How do the optimally dense measures vary with radius?
- 3. Is D(r) the sup density over periodic radius r- sphere packings?

Continuity

Is there a continuous path of optimally dense measures parametrized by radius?

Theorem 1. (continuity) The optimal density function D is continuous (in every dimension).

Figure 6: thick pea soup

Figure 7: a horoball packing

Figure 8: the region to be removed

Figure 9: peas removed

Is D(r) the sup over periodic packings?

Theorem 2. Yes in dim = 2, 3.

• Euclidean approach fails because of linear isoperimetric inequality in \mathbb{H}^n .

Instead of sphere packings, consider packings by a set of polyhedra.
If they have bounded diameter, then it's still true in Euclidean space.
It's not true in ⊞ⁿ; only known counterexample uses infinitely many polyhedra.

Figure 10: move peas a little so that they intersect each ideal triangle in only finitely many configurations

Symbolic Dynamics

- Let G be a group, K a finite set of colors.
- Let $\Sigma(G, K) = K^G$, the set of all colorings of G = the full shift in symbolic dynamics.
- G acts on $\Sigma(G, K)$ in the natural way.
- \bullet Let M(G,K) be the space of $G\mbox{-invariant}$ probability measures on $\Sigma(G,K)$

The Periodic Approximation Property

- $\mu \in M(G, K)$ is periodic \leftrightarrow support (μ) is finite.
- G has the periodic approximation property \leftrightarrow the set of periodic measures is dense in M(G, K) (for all K).

Theorem 3. If there exists a discrete cofinite group $G < Isom(\mathbb{H}^n)$ that has the periodic approximation property (PAP) then the answer is yes in dimension n.

Groups with the Periodic Approximation Property

- free groups \rightarrow periodic approximability in dim. 2
- a mapping torus over a group with PAP \rightarrow periodic approx. in dim. 3
- subgroups of groups with $PAP \rightarrow$ surface groups.
- It's not known if there are any cofinite groups in Isom(ℍn) with PAP for n > 3.

Packings by polygons

- If we have a set of polygons with optimal density 1, what is the sup density over periodic packings?
- Assume they are based on a right-angled pentagon.

Figure 11: pentagons with bumps and dents

 If there are finitely many, then the sup density over periodic packings is 1.