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Euclidean Space

e A sphere packing is a collection of nonoverlapping congruent balls in
Euclidean space E".

e What are the densest sphere packings?

density(P) = lim density(P in a radius-R ball centered at p)

R— o0



Well-Posed

o density(P) is independent of origin.
e [he maximum density is attained.

e The maximum density is independent of radius.



Periodicity

e A periodic packing P is one whose symmetry group Gp < Isom(E") is
cocompact.
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Figure 1: maximum density = sup density over periodic packings.

e Is this attained by periodic packings? (not known, except in dim 2, 3).



Hyperbolic Space H"

Figure 2: A densest circle packing in the hyperbolic plane (pic by Ken Stephenson)



Is the sphere-packing problem well-posed in H"?

Figure 3: Density depends on origin

e Do densest packings exist? (more on this later).



Figure 4: “maximum density” depends on radius (pics by Don Hatch).



Figure 5: K. Boroczky's packing




Periodic Packings

e A periodic packing P is one whose symmetry group Gp < Isom(H") is
cofinite.

e For a periodic packing, density exists independent of origin.

e For most radii r, there are no densest periodic packings by balls of radius
r (Charles Radin and 1).



Limits of Periodic Packings ?

Naive approach fails.

pp = the uniform (probability) distribution on congruent copies of the

packing P.
{pup}p has a limit point.

“density” exists and has continuity properties.
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Measures

(joint with Charles Radin, inspired by Oded Schramm)

P, := space of radius r-sphere packings;
Isom(H™) acts on P, in the natural way;
M, := space of probability measures on P,. invariant under Isom(H");

For u € M,, density(u) := u({ packings P that cover the origin }).
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Tools

e 1 is ergodic if it is not a nontrivial convex sum of two measures in M,..

e If 11 is ergodic then p-almost all packings P have dense orbit in supp(u).

o If 1 is ergodic then for p-almost any packing P, density(P) exists
independent of origin and equals density(u).

e Ergodic theory results rely on work of A. Nevo and E. Stein.

12



More Tools

M, is compact in the weak* topology.
density : M, — |0, 1] is continuous.
Let D(r) = max,enm, density(p). “optimal density function”

€ M,, density(u) = D(r) <> u is “optimally dense”.

An “optimally dense packing” P is a packing in the support of an
optimally dense measure such that density(P) = density(u) for every

choice of origin.
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Questions

1. What are the optimally dense measures??
2. How do the optimally dense measures vary with radius?

3. Is D(r) the sup density over periodic radius r- sphere packings?
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Continuity

Is there a continuous path of optimally dense measures parametrized by
radius?

Theorem 1. (continuity) The optimal density function D is continuous
(in every dimension).
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Figure 6: thick pea soup



Figure 7: a horoball packing
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Figure 8: the region to be removed
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Figure 9: peas removed



Is D(r) the sup over periodic packings?

Theorem 2. Yes in dim = 2, 3.

e Euclidean approach fails because of linear isoperimetric inequality in H".

e Instead of sphere packings, consider packings by a set of polyhedra.
If they have bounded diameter, then it's still true in Euclidean space.
It's not true in H"™; only known counterexample uses infinitely many
polyhedra.
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Figure 10: move peas a little so that they intersect each ideal triangle in only finitely

many configurations



Symbolic Dynamics

Let G be a group, K a finite set of colors.

Let X(G,K) = K©, the set of all colorings of G = the full shift in
symbolic dynamics.

G acts on X(G, K) in the natural way.

Let M(G,K) be the space of G-invariant probability measures on
%(G, K)
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The Periodic Approximation Property

o 1€ M(G, K) is periodic <> support(u) is finite.

e (5 has the periodic approximation property <> the set of periodic measures
is dense in M (G, K) (for all K).

Theorem 3. [f there exists a discrete cofinite group G < Isom(H")
that has the periodic approximation property (PAP) then the answer is
yes in dimension n.
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Groups with the Periodic Approximation Property

Z’I’L
free groups — periodic approximability in dim. 2
a mapping torus over a group with PAP — periodic approx. in dim. 3

subgroups of groups with PAP — surface groups.

It's not known if there are any cofinite groups in Isom(H"™) with PAP

for n > 3.
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Packings by polygons

e If we have a set of polygons with optimal density 1, what is the sup
density over periodic packings?

e Assume they are based on a right-angled pentagon.

&

Figure 11: pentagons with bumps and dents

e |f there are finitely many, then the sup density over periodic packings is
1.
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