
69

The Polytope of Pointed Pseudotriangulations,
and Delone and anti-Delone

Pseudotriangulations

Günter Rote
Freie Universität Berlin, Institut für Informatik

MSRI Workshop: Combinatorial and Discrete Geometry

November 17–21, 2003, Berkeley

1. Pseudotriangulations: basic definitions and properties

2. The pointed pseudotriangulation polytope

3. Locally convex surfaces and lifted pseudotriangulations

4. Canonical pseudotriangulations



68

Pointed Vertices

A pointed vertex is incident to an angle > 180◦ (a reflex angle

or big angle).

A straight-line graph is pointed if all vertices are pointed.
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Pointed Vertices

A pointed vertex is incident to an angle > 180◦ (a reflex angle

or big angle).

A straight-line graph is pointed if all vertices are pointed.

Where do pointed vertices arise?
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Visibility among convex obstacles

Equivalence classes of visibility segments. Extreme segments

are bitangents of convex obstacles.

[Pocchiola and Vegter 1996]



66

Geodesic shortest paths

Shortest path (with given homotopy) turns only at pointed

vertices. Addition of shortest path edges leaves intermediate

vertices pointed.

→ geodesic triangulations of a simple polygon

[Chazelle,Edelsbrunner, Grigni, Guibas, Hershberger, Sharir, Snoeyink
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1994]
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Pseudotriangulations

Given: A set V of vertices, a subset Vp ⊆ V of pointed

vertices.

A pseudotriangulation is a maximal (with respect to ⊆) set of

non-crossing edges with all vertices in Vp pointed.
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Pseudotriangulations

Given: A set V of vertices, a subset Vp ⊆ V of pointed

vertices.

A pseudotriangulation is a maximal (with respect to ⊆) set of

non-crossing edges with all vertices in Vp pointed.
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Pseudotriangles

A pseudotriangle has three convex corners and an arbitrary

number of reflex vertices (> 180◦).



62

Pseudotriangulations

Given: A set V of vertices, a subset Vp ⊆ V of pointed

vertices.

(1) A pseudotriangulation is a maximal (w.r.t. ⊆) set E of

non-crossing edges with all vertices in Vp pointed.
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Pseudotriangulations

Given: A set V of vertices, a subset Vp ⊆ V of pointed

vertices.

(1) A pseudotriangulation is a maximal (w.r.t. ⊆) set E of

non-crossing edges with all vertices in Vp pointed.

(2) A pseudotriangulation is a partition of a convex polygon

into pseudotriangles.
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Pseudotriangulations

Given: A set V of vertices, a subset Vp ⊆ V of pointed

vertices.

(1) A pseudotriangulation is a maximal (w.r.t. ⊆) set E of

non-crossing edges with all vertices in Vp pointed.

(2) A pseudotriangulation is a partition of a convex polygon

into pseudotriangles.

Proof. (2) =⇒ (1) No edge can be added inside a

pseudotriangle without creating a nonpointed vertex.

Proof. (1) =⇒ (2) All convex hull edges are in E.

→ decomposition of the polygon into faces.

Need to show: If a face is not a pseudotriangle, then one can

add an edge without creating a nonpointed vertex.
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Characterization of pseudotriangulations

Lemma. If a face is not a pseudotriangle, then one can add

an edge without creating a nonpointed vertex.
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convex vertex. Take the shortest path.
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Characterization of pseudotriangulations

Lemma. If a face is not a pseudotriangle, then one can add

an edge without creating a nonpointed vertex.

Go from a convex vertex along the boundary to the third

convex vertex. Take the shortest path.
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Characterization of pseudotriangulations,
continued

A new edge is always added, unless the face is already a

pseudotriangle (without inner obstacles).

[Rote, C. A. Wang, L. Wang, Xu 2003]
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Tangents of pseudotriangles

“Proof. (2) =⇒ (1) No edge can be added inside a

pseudotriangle without creating a nonpointed vertex.”

For every direction, there is a unique tangent line which is

“tangent” at a reflex vertex or “cuts through” a corner.
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Flipping of Edges

Any interior edge can be flipped against another edge. That

edge is unique.

before after



58

Flipping of Edges

Any interior edge can be flipped against another edge. That

edge is unique.

before after

The flip graph is connected.

Its diameter is O(n log n). [Bespamyatnikh 2003]
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Flipping

Every tangent ray can be continued to a geodesic path running

along the boundary to a corner, in a unique way.

Every pseudoquadrangle has precisely two diagonals, which

cut it into two pseudotriangles.
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Vertex and face counts

Lemma. A pseudotriangulation with x nonpointed and y

pointed vertices has e = 3x + 2y − 3 edges and 2x + y − 2
pseudotriangles.

Corollary. A pointed pseudotriangulation with n vertices has

e = 2n− 3 edges and n− 2 pseudotriangles.
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Vertex and face counts

Lemma. A pseudotriangulation with x nonpointed and y

pointed vertices has e = 3x + 2y − 3 edges and 2x + y − 2
pseudotriangles.

Corollary. A pointed pseudotriangulation with n vertices has

e = 2n− 3 edges and n− 2 pseudotriangles.

Proof. A k-gon pseudotriangle has k − 3 large angles.∑
t∈T

(kt − 3) + kouter = y∑
t
kt + kouter︸ ︷︷ ︸
2e

−3|T | = y

e + 2 = (|T |+ 1) + (x + y) (Euler)
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Vertex and face counts

Lemma. A pseudotriangulation with x nonpointed and y

pointed vertices has e = 3x + 2y − 3 edges and 2x + y − 2
pseudotriangles.

Corollary. A pointed pseudotriangulation with n vertices has

e = 2n− 3 edges and n− 2 pseudotriangles.

Corollary. A pointed graph with n ≥ 2 vertices has at most

2n− 3 edges.
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Pseudotriangulations/
Geodesic Triangulations

Applications:

• data structures for ray shooting [Chazelle, Edelsbrunner, Grigni,

Guibas, Hershberger, Sharir, and Snoeyink 1994] and visibility

[Pocchiola and Vegter 1996]

• kinetic collision detection [Agarwal, Basch, Erickson, Guibas,

Hershberger, Zhang 1999–2001] [Kirkpatrick, Snoeyink, and Speckmann

2000] [Kirkpatrick & Speckmann 2002]

• art gallery problems [Pocchiola and Vegter 1996b],

[Speckmann and Tóth 2001]
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2. A polyhedron for pointed
pseudotriangulations

Theorem. For every set S of points in general position, there

is a convex (2n−3)-dimensional polyhedron X whose vertices

correspond to the pointed pseudotriangulations of S.

[Rote, Santos, Streinu 2003]

There is one inequality for each pair of points. At a vertex of

X:

tight inequalities ↔ edges of a pointed pseudotriangulation.
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Increasing the distances

dij := ‖pi − pj‖
Find new locations p̄i such that

‖p̄i − p̄j‖ ≥ dij + εδij

for very small (infinitesimal) ε and appropriate numbers δij.

dij

pi

pj

p̄i

p̄j

dij + εδij

If the new distances dij + εδij are generic, the maximal sets of

tight inequalities will correspond to minimally rigid graphs.
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Heating up the bars

∆T = |x|2

Length increase ≥
∫

x∈pipj

|x|2 ds
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Heating up the bars

∆T = |x|2

Length increase ≥
∫

x∈pipj

|x|2 ds

δij =
∫

x∈pipj

|x|2 ds

δij = |pi − pj| · (|pi|2 + 〈pi, pj〉+ |pj|2) · 1
3
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Heating up the bars — points in convex
position

⇒
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The space of infinitesimal motions

n vertices p1, . . . , pn.

• (global) motion pi = pi(t), t ≥ 0
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Velocity vectors v1, . . . , vn.
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The space of infinitesimal motions

n vertices p1, . . . , pn.

• (global) motion pi = pi(t), t ≥ 0

• infinitesimal motion (local motion)

vi =
d

dt
pi(t) = ṗi(0)

Velocity vectors v1, . . . , vn.

• p̄i = pi + εvi = pi + dt · vi
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Expansion

1
2 ·

d

dt
|pi(t)− pj(t)|2 = 〈vi − vj, pi − pj〉 =: expij

vi · (pj − pi) vj · (pj − pi)

pj − pi

vi

pjpi

vj

expansion (or strain) expij of the segment ij
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Expansion

1
2 ·

d

dt
|pi(t)− pj(t)|2 = 〈vi − vj, pi − pj〉 =: expij

vi · (pj − pi) vj · (pj − pi)

pj − pi

vi

pjpi

vj

expansion (or strain) expij of the segment ij

expij = |pi − pj| · (‖p̄i − p̄j‖ − ‖pi − pj‖)



47

Pinning of Vertices

Trivial Motions: Motions of the point set as a whole

(translations, rotations).

Normalization: Pin a vertex and a direction. (“tie-down”)

v1 = 0

v2 ‖ p2 − p1

This eliminates 3 degrees of freedom.

The polyhedron lives in 2n− 3 dimensions.
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The PPT polyhedron

X̄f = { (v1, . . . , vn) | expij ≥ fij }

• fij := |pi − pj|2 · (|pi|2 + 〈pi, pj〉+ |pj|2)

• f ′ij := [a, pi, pj] · [b, pi, pj]

[x, y, z] = signed area of the triangle xyz

a, b: two arbitrary points.
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Tight edges

For v = (v1, . . . , vn) ∈ X̄f ,

E(v) := { ij | expij = fij }

is the set of tight edges at v.

Maximal sets of tight edges ≡ vertices of X̄f .
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What are good values of fij?

Which configurations of edges can occur in a set of tight

edges?

We want:

• no crossing edges

• no 3-star with all angles ≤ 180◦

It is sufficient to look at 4-point subsets.
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The PPT-polyhedron

→ For every vertex v, E(v) is non-crossing and pointed.

→ |E(v)| ≤ 2n− 3

→ |E(v)| = 2n− 3 and X̄f is a simple polyhedron.

Every vertex is incident to 2n− 3 edges.

Edge ≡ removing a segment from E(v).

Removing an interior segment leads to an adjacent

pseudotriangulation (flip).

Removing a hull segment is an extreme ray. 2
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Good values fij for 4 points

In a set of tight edges, we want:

• no crossing edges

• no 3-star with all angles ≤ 180◦
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Good values fij for 4 points

fij is given on six edges.

Any five values expij determine the

last one.

Check if the resulting value expij of

the last edge is feasible (expij ≥ fij)

→ checking the sign of an expression.
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Good Values fij for 4 points

A 4-tuple p1, p2, p3, p4 has a unique self-stress (up to a scalar

factor).

ωij =
1

[pi, pj, pk] · [pi, pj, pl]
, for all 1 ≤ i < j ≤ 4

i

j

k

l

ωij > 0 for boundary edges.

ωij < 0 for interior edges.
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Why the stress?

If the equation ∑
1≤i<j≤4

ωijfij = 0

holds, then fij are the expansion values expij of a motion

(v1, v2, v3, v4).

Actually, “if and only if”.
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Why the stress?

If the equation ∑
1≤i<j≤4

ωijfij = 0

holds, then fij are the expansion values expij of a motion

(v1, v2, v3, v4).

Actually, “if and only if”.

[ MTω = 0, f = exp = Mv ]
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Good perturbations

We need

ω12f12 + ω13f13 + ω14f14 + ω23f23 + ω24f24 + ω34f34 > 0

for all 4-tuples of points p1, p2, p3, p4, with

ωij =
1

[pi, pj, pk] · [pi, pj, pl]
, fij = [a, pi, pj][b, pi, pj]
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Good perturbations

We need

ω12f12 + ω13f13 + ω14f14 + ω23f23 + ω24f24 + ω34f34 > 0

for all 4-tuples of points p1, p2, p3, p4, with

ωij =
1

[pi, pj, pk] · [pi, pj, pl]
, fij = [a, pi, pj][b, pi, pj]

ω12f12 + ω13f13 + ω14f14 + ω23f23 + ω24f24 + ω34f34 = 1 > 0
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What is the meaning of
∑

1≤i<j≤4 ωijfij = 1?

“I believe there is some underlying homology in this situation.

Given the fact that motions and stresses also fit into a setting

of cohomology and homology as well, the authors might, at

least, mention possible homology descriptions.”

[a referee, about the definition of ωij]
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What is the meaning of
∑

1≤i<j≤4 ωijfij = 1?

“I believe there is some underlying homology in this situation.

Given the fact that motions and stresses also fit into a setting

of cohomology and homology as well, the authors might, at

least, mention possible homology descriptions.”

[a referee, about the definition of ωij]

One can define a similar formula for ω for the k-wheel.



36∑
ij∈E ωijfij = 1 for the k-wheel

ωi,i+1 =
1

[pi, pi+1, p0] · [p1, p2, . . . , pk]

ω0i =
1

[pi−1, pi, p0] · [pi, pi+1, p0]
· [pi−1, pi, pi+1]
[p1, p2, . . . , pk]
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Cones and polytopes

• The expansion cone

X̄0 = { expij ≥ 0 }

• The perturbed expansion cone

= the PPT polyhedron

X̄f = { expij ≥ fij }

• The PPT polytope

Xf = { expij ≥ fij,

expij = fij for ij on boundary }
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The PPT polytope

Cut out all rays:

Change expij ≥ fij to expij = fij for hull edges.

Theorem. For every set S of points in general position,

there is a convex (2n−3)-dimensional polytope whose vertices

correspond to the pointed pseudotriangulations of S.
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Extreme rays of the expansion cone

The Expansion Cone X̄0:

collapse parallel rays into one ray. → pseudotriangulations

minus one hull edge. Rigid subcomponents are identified.

Pseudotriangulations with one convex hull edge removed yield

expansive mechanisms. [Streinu 2000]
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Expansive motions for a chain
(or a polygon)

• Add edges to form a pseudotriangulation

• Remove a convex hull edge

• → expansive mechanism 2

Theorem. Every polygonal arc in the plane can be brought

into straight position, without self-overlap.

Every polygon in the plane can be unfolded into convex

position.

[Connelly, Demaine, Rote 2001], [Streinu 2001]
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The PT polytope

Vertices correspond to all pseudotriangulations, pointed or

not.

Change inequalities expij ≥ fij to

expij +(si + sj)‖pj − pi‖ ≥ fij

with a “slack variable” si for every vertex.

si = 0 indicates that vertex i is pointed.

A “flip” may insert an edge, changing a vertex from pointed

to non-pointed, or vice versa.

Faces are in one-to-one correspondence with all non-crossing

graphs.

[Orden, Santos 2002]
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Which fij to choose?

• fij := |pi − pj|2 · (|pi|2 + 〈pi, pj〉+ |pj|2)

• f ′ij := [a, pi, pj] · [b, pi, pj]

Go to the space of the (expij) variables instead of the (vi)
variables.

exp = Mv
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Characterization of the space (expij)i,j

A set of values (expij)1≤i<j≤n forms the expansion values of a

motion (v1, . . . , vn) if and only if the equation∑
1≤i<j≤4

ωij expij = 0

holds for all 4-tuples.

SKIP
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A canonical representation

∑
1≤i<j≤4

ωij expij = 0, for all 4-tuples

expij ≥ fij, for all pairs i, j
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A canonical representation

∑
1≤i<j≤4

ωij expij = 0, for all 4-tuples

expij ≥ fij, for all pairs i, j

∑
1≤i<j≤4

ωijfij = 1, for all 4-tuples

Substitute dij := expij −fij:∑
1≤i<j≤4 ωijdij = −1, for all 4-tuples (1)

dij ≥ 0, for all i, j (2)
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The associahedron

9

11

13

15

4
6

8
10

12

1

3

5

7

v4

v2

v3
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Catalan structures

• Triangulations of a convex polygon / edge flip

• Binary trees / rotation

• (a ∗ (b ∗ (c ∗ d))) ∗ e / ((a ∗ b) ∗ (c ∗ d)) ∗ e

• . . . . . . . . . . . . . . . . . . . . .
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The secondary polytope

Triangulation T 7→ (a1, . . . , an).

ai := total area of all triangles incident to pi

vertices ≡ regular triangulations of (p1, . . . , pn)

(p1, . . . , pn) in convex position:

pseudotriangulations≡ triangulations≡ regular triangulations.

→ two realizations of the associahedron.

These two associahedra are affinely equivalent.
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Expansive motions in one dimension

{ (vi) ∈ Rn | vj − vi ≥ fij for 1 ≤ i < j ≤ n }

For example, fij := (i− j)2.

→ gives rise to different realizations of the associahedron.

[Gelfand, Graev, and Postnikov 1997], in a dual setting.

[Postnikov 1997], [Zelevinsky ?], [Stasheff 1997]
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The associahedron

9

11

13

15

4
6

8
10

12
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v4

v2

v3
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3. Locally convex surfaces
Motivation: the reflex-free hull

flat

nearly reflex

reflex

saddle
nearly convex

convex

an approach for recognizing pockets in biomolecules

[Ahn, Cheng, Cheong, Snoeyink 2002]
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Locally convex functions

A function over a polygonal domain P is locally convex if it is

convex on every segment in P .
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Locally convex functions

A function over a polygonal domain P is locally convex if it is

convex on every segment in P .
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Locally convex functions on a poipogon

A poipogon (P, S) is a simple polygon P with some additional

vertices inside.

Given a poipogon and a height value hi for each pi ∈ S, find

the highest locally convex function f : P → R with f(pi) ≤ hi.

If P is convex, this is the lower convex hull of the three-

dimensional point set (pi, hi).

In general, the result is a piecewise linear function defined

on a pseudotriangulation of (P, S). (Interior vertices may be

missing.)

→ regular pseudotriangulations

[Aichholzer, Aurenhammer, Braß, Krasser 2003]
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The surface theorem

In a pseudotriangulation T of (P, S), a vertex is complete if

it is a corner in all pseudotriangulations to which it belongs.

Theorem. For any given set of heights hi for the complete

vertices, there is a unique piecewise linear function f on the

pseudotriangulation with theses heights. The function depends

monotonically on the given heights.

In a triangulation, all vertices are complete.
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Proof of the surface theorem

Each incomplete vertex pi is a convex combination of the three

corners of the pseudotriangle in which its large angle lies:

pi = αpj + βpk + γpl, with α + β + γ = 1, α, β, γ > 0.

→ hi = αhj + βhk + γhl

h is a harmonic function on the incomplete vertices.
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Proof of the surface theorem

Each incomplete vertex pi is a convex combination of the three

corners of the pseudotriangle in which its large angle lies:

pi = αpj + βpk + γpl, with α + β + γ = 1, α, β, γ > 0.

→ hi = αhj + βhk + γhl

h is a harmonic function on the incomplete vertices.

The coefficient matrix of the mapping M : (h1, . . . , hn) 7→
(h′1, . . . , h

′
n) is a stochastic matrix. M is a monotone function,

and Mn is a contraction. → There is always a unique solution.
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Flipping to optimality

Find an edge where convexity is violated, and flip it.

convexifying flips a planarizing flip

A flip has a non-local effect on the whole surface.

The surface moves down monotonically.
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Realization as a polytope
Theorem. There exists a convex polytope whose vertices

are in one-to-one correspondence with the regular

pseudotriangulations of a poipogon, and whose edges represent

flips.

[Aichholzer, Aurenhammer, Braß, Krasser 2003]

Pseudotriangulation T 7→ (a1, . . . , an):∫
P

f(x, y) dx dy = a1h1 + · · ·+ anhn

(ai = 0 for all incomplete vertices pi.)

T is represented by the point (a1, . . . , an) ∈ Rn.

For a simple polygon (without interior points), all

pseudotriangulations are regular.
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4. Canonical pseudotriangulations

Maximize/minimize
∑n

i=1 ci · vi over the PPT-polytope.

ci := pi:

(a) (b) (c)

Delaunay triangulation Max/Min
∑

pi · vi

(affinely invariant)

(Can be constructed as the lower/upper convex hull of lifted

points.) [André Schulz]
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Edge flipping criterion for canonical
pseudotriangulations of 4 points in convex

position

Maximize/minimize the product of the areas. (Also for 4

points in non-convex position)

Invariant under affine transformations.
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The “Delone pseudotriangulation” for 100
random points
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The “Anti-Delone pseudotriangulation” for
100 random points
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The Maxwell-Cremona Correspondence
[1864/1872]

self-stresses on a

planar framework

m one-to-one correspondence

reciprocal diagram

m one-to-one correspondence

3-d lifting (polyhedral terrain)
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Valley and mountain folds

ωij > 0 ωij < 0

valley mountain

bar or strut bar
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The Maxwell-Cremona Correspondence for
closed polyhedral surfaces

3-d lifting

(spherical polyhedral surface)

m one-to-one correspondence

self-stresses on a

framework which

is a planar graph
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Geometric construction of the Delone
pseudotriangulation for convex position

[Günter Rote, André Schulz]

minimize 〈vi, pi〉
subject to 〈vi − vj, pi − pj〉 ≥ fij∑

vi = 0

Consider the dual linear program in variables ωij = ωji ≥ 0.

maximize some objective function

subject to
∑

j ωij(pj − pi) = p̄− pi, for all i

ωij ≥ 0.

with p̄ =
∑

pi/n = center of gravity.
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The dual variables are stresses

∑
j

ωij(pj − pi) = p̄− pi

ωij = ωji ∈ R are stresses on the edges.

Consider p0 := p̄ as an additional vertex with ω0i = −1:

Equilibrium of forces in vertex i:
n∑

j=0

ωij(pj − pi) = 0
pi

pj

ωij(pj − pi)
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Stresses

The optimum primal solution will have 〈vi − vj, pi − pj〉 = fij

on some pseudotriangulation E(v).

Complementary slackness implies that ωij = 0 for ij /∈ E(v).
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Stresses in the convex case

E(v) together with the additional edges pip0 is a planar graph.

p0

Maxwell-Cremona theorem → lifting of a polytope:

Overlay of

• a convex lifting of the triangulation E(v) and

• a pyramid formed by p0 and the convex polygon p1p2 . . . pn.
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The lifting in the convex case

p0

The stresses on the spokes p0pi are known (ω0i = −1)

→ the heights of p1, p2, . . . , pn can be computed.

The lower convex hull of these points gives the “Delone”

(pseudo-)triangulation.

The upper convex hull of the same lifted points gives the

“anti-Delone” (pseudo-)triangulation.
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Calculation of the heights

Let p1p2 . . . pn be a convex polygon.∑
(pi − p0) = 0 by definition.

Form a new “sum polygon” whose sides are pi − p0:

Pi − Pi−1 = pi − p0

p0

p1

p2

p3
p4

p5

p6

P1
P2

P3

P4
P5

P6
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Calculation of the heights

Let p1p2 . . . pn be a convex polygon.∑
(pi − p0) = 0 by definition.

Form a new “sum polygon” whose sides are pi − p0:

Pi − Pi−1 = pi − p0

p0

p1

p2

p3
p4

p5

p6

P1
P2

P3

P4
P5

P6

p0

p1

p2

p3
p4

p5

p6

P1
P2

P3

P4
P5

P6

a

Define height of pi := [a, Pi−1, Pi] for an arbitrary point a.
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Minimal pseudotriangulations

Minimal pseudotriangulations (w.r.t. ⊆) are not necessarily

minimum-cardinality pseudotriangulations.

A minimal

pseudotriangulation

has at most 3n − 8
edges, and this is tight

for infinitely many values

of n.

[Rote, C. A. Wang, L. Wang, Y. Xu 2003]
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Pseudotriangulations in 3-space?

Rigid graphs are not well-understood in 3-space.
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