The Polytope of Pointed Pseudotriangulations, and Delone and anti-Delone Pseudotriangulations

Günter Rote Freie Universität Berlin, Institut für Informatik

MSRI Workshop: Combinatorial and Discrete Geometry November 17–21, 2003, Berkeley

- [1. Pseudotriangulations: basic definitions and properties](#page-2-0)
- [2. The pointed pseudotriangulation polytope](#page-29-0)
- [3. Locally convex surfaces and lifted pseudotriangulations](#page-71-0)
- [4. Canonical pseudotriangulations](#page-80-0)

Pointed Vertices

A pointed vertex is incident to an angle $> 180^{\circ}$ (a reflex angle or big angle).

A straight-line graph is pointed if all vertices are pointed.

Pointed Vertices

A pointed vertex is incident to an angle $> 180^{\circ}$ (a reflex angle or big angle).

A straight-line graph is pointed if all vertices are pointed.

Where do pointed vertices arise?

Visibility among convex obstacles

Equivalence classes of *visibility segments*. Extreme segments are bitangents of convex obstacles.

[Pocchiola and Vegter 1996]

Geodesic shortest paths

Shortest path (with given homotopy) turns only at pointed vertices. Addition of shortest path edges leaves intermediate vertices pointed.

 \rightarrow geodesic triangulations of a simple polygon [Chazelle,Edelsbrunner, Grigni, Guibas, Hershberger, Sharir, Snoeyink 1994]

Given: A set V of vertices, a subset $V_p \subseteq V$ of pointed vertices.

Given: A set V of vertices, a subset $V_p \subseteq V$ of pointed vertices.

Given: A set V of vertices, a subset $V_p \subseteq V$ of pointed vertices.

Given: A set V of vertices, a subset $V_p \subseteq V$ of pointed vertices.

Pseudotriangles

A pseudotriangle has three convex corners and an arbitrary number of reflex vertices $($ > $180^{\circ})$.

Given: A set V of vertices, a subset $V_p \subseteq V$ of pointed vertices.

Given: A set V of vertices, a subset $V_p \subseteq V$ of pointed vertices.

(1) A pseudotriangulation is a maximal (w.r.t. \subseteq) set E of non-crossing edges with all vertices in V_p pointed.

(2) A pseudotriangulation is a partition of a convex polygon into pseudotriangles.

Given: A set V of vertices, a subset $V_p \subseteq V$ of pointed vertices.

(1) A pseudotriangulation is a maximal (w.r.t. \subseteq) set E of non-crossing edges with all vertices in V_p pointed.

(2) A pseudotriangulation is a partition of a convex polygon into pseudotriangles.

Proof. $(2) \implies (1)$ No edge can be added inside a pseudotriangle without creating a nonpointed vertex.

Given: A set V of vertices, a subset $V_p \subseteq V$ of pointed vertices.

(1) A pseudotriangulation is a maximal (w.r.t. \subseteq) set E of non-crossing edges with all vertices in V_p pointed.

(2) A pseudotriangulation is a partition of a convex polygon into pseudotriangles.

Proof. $(2) \implies (1)$ No edge can be added inside a pseudotriangle without creating a nonpointed vertex. Proof. (1) \implies (2) All convex hull edges are in E. \rightarrow decomposition of the polygon into faces. Need to show: If a face is not a pseudotriangle, then one can add an edge without creating a nonpointed vertex.

Lemma. If a face is not a pseudotriangle, then one can add an edge without creating a nonpointed vertex.

Lemma. If a face is not a pseudotriangle, then one can add an edge without creating a nonpointed vertex.

Go from a convex vertex along the boundary to the third convex vertex. Take the shortest path.

Lemma. If a face is not a pseudotriangle, then one can add an edge without creating a nonpointed vertex.

Go from a convex vertex along the boundary to the third convex vertex. Take the shortest path.

Lemma. If a face is not a pseudotriangle, then one can add an edge without creating a nonpointed vertex.

Go from a convex vertex along the boundary to the third convex vertex. Take the shortest path.

Characterization of pseudotriangulations, continued

A new edge is always added, unless the face is already a pseudotriangle (without inner obstacles).

[Rote, C. A. Wang, L. Wang, Xu 2003]

Tangents of pseudotriangles

"Proof. $(2) \implies (1)$ No edge can be added inside a pseudotriangle without creating a nonpointed vertex."

For every direction, there is a unique tangent line which is "tangent" at a reflex vertex or "cuts through" a corner.

Flipping of Edges

Any interior edge can be flipped against another edge. That edge is unique.

Flipping of Edges

Any interior edge can be flipped against another edge. That edge is unique.

The flip graph is connected. Its diameter is $O(n \log n)$. [Bespamyatnikh 2003]

Flipping

Every tangent ray can be continued to a geodesic path running along the boundary to a corner, in a unique way.

Every pseudoquadrangle has precisely two diagonals, which cut it into two pseudotriangles.

Lemma. A pseudotriangulation with x nonpointed and y pointed vertices has $e = 3x + 2y - 3$ edges and $2x + y - 2$ pseudotriangles.

Corollary. A pointed pseudotriangulation with n vertices has $e = 2n - 3$ edges and $n - 2$ pseudotriangles.

Lemma. A pseudotriangulation with x nonpointed and y pointed vertices has $e = 3x + 2y - 3$ edges and $2x + y - 2$ pseudotriangles.

Corollary. A pointed pseudotriangulation with n vertices has $e = 2n - 3$ edges and $n - 2$ pseudotriangles.

Proof. A k -gon pseudotriangle has $k-3$ large angles.

$$
\sum_{t \in T} (k_t - 3) + k_{\text{outer}} = y
$$

Lemma. A pseudotriangulation with x nonpointed and y pointed vertices has $e = 3x + 2y - 3$ edges and $2x + y - 2$ pseudotriangles.

Corollary. A pointed pseudotriangulation with n vertices has $e = 2n - 3$ edges and $n - 2$ pseudotriangles.

Proof. A k -gon pseudotriangle has $k-3$ large angles.

$$
\sum_{t \in T} (k_t - 3) + k_{\text{outer}} = y
$$

$$
\sum_{t} k_t + k_{\text{outer}} - 3|T| = y
$$

$$
e + 2 = (|T| + 1) + (x + y) \qquad \text{(Euler)}
$$

Lemma. A pseudotriangulation with x nonpointed and y pointed vertices has $e = 3x + 2y - 3$ edges and $2x + y - 2$ pseudotriangles.

Corollary. A pointed pseudotriangulation with n vertices has $e = 2n - 3$ edges and $n - 2$ pseudotriangles.

Corollary. A pointed graph with $n \geq 2$ vertices has at most $2n-3$ edges.

Pseudotriangulations/ Geodesic Triangulations

Applications:

- data structures for ray shooting [Chazelle, Edelsbrunner, Grigni, Guibas, Hershberger, Sharir, and Snoeyink 1994] and visibility [Pocchiola and Vegter 1996]
- kinetic collision detection [Agarwal, Basch, Erickson, Guibas, Hershberger, Zhang 1999–2001] [Kirkpatrick, Snoeyink, and Speckmann 2000] [Kirkpatrick & Speckmann 2002]
- art gallery problems [Pocchiola and Vegter 1996b], [Speckmann and Tóth 2001]

2. A polyhedron for pointed pseudotriangulations

Theorem. For every set S of points in general position, there is a convex $(2n-3)$ -dimensional polyhedron X whose vertices correspond to the pointed pseudotriangulations of S.

[Rote, Santos, Streinu 2003]

There is one inequality for each pair of points. At a vertex of $X:$

tight inequalities \leftrightarrow edges of a pointed pseudotriangulation.

Increasing the distances

$$
d_{ij}:=\|p_i-p_j\|
$$

Find new locations \bar{p}_i such that

$$
\|\bar{p}_i-\bar{p}_j\|\geq d_{ij}+\varepsilon\delta_{ij}
$$

for very small (infinitesimal) ε and appropriate numbers δ_{ij} .

If the new distances $d_{ij} + \varepsilon \delta_{ij}$ are generic, the maximal sets of tight inequalities will correspond to minimally rigid graphs.

$$
\Delta T = |x|^2
$$

Length increase
$$
\geq \int \limits_{x \in p_i p_j} |x|^2 ds
$$

$$
\Delta T = |x|^2
$$

Length increase
$$
\geq \int \limits_{x \in p_i p_j} |x|^2 ds
$$

$$
\Delta T = |x|^2
$$

Length increase $\ge \int_{x \in p_i p_j} |x|^2 ds$

$$
\delta_{ij} = \int_{x \in p_i p_j} |x|^2 ds
$$

$$
\delta_{ij} = |p_i - p_j| \cdot (|p_i|^2 + \langle p_i, p_j \rangle + |p_j|^2) \cdot \frac{1}{3}
$$

Heating up the bars — points in convex position

The space of infinitesimal motions

- n vertices p_1, \ldots, p_n .
- (global) motion $p_i = p_i(t)$, $t \geq 0$

The space of infinitesimal motions

 n vertices p_1, \ldots, p_n .

- (global) motion $p_i = p_i(t)$, $t \geq 0$
- infinitesimal motion (local motion)

$$
v_i = \frac{d}{dt} p_i(t) = \dot{p}_i(0)
$$

Velocity vectors v_1, \ldots, v_n .

The space of infinitesimal motions

 n vertices p_1, \ldots, p_n .

- (global) motion $p_i = p_i(t)$, $t \geq 0$
- *infinitesimal motion* (local motion)

$$
v_i = \frac{d}{dt} p_i(t) = \dot{p}_i(0)
$$

Velocity vectors v_1, \ldots, v_n .

• $\bar{p}_i = p_i + \varepsilon v_i = p_i + dt \cdot v_i$

Expansion

expansion (or strain) \exp_{ij} of the segment ij

Expansion

expansion (or strain) \exp_{ij} of the segment ij

$$
\exp_{ij} = |p_i - p_j| \cdot (||\bar{p}_i - \bar{p}_j|| - ||p_i - p_j||)
$$

Pinning of Vertices

Trivial Motions: Motions of the point set as a whole (translations, rotations).

Normalization: Pin a vertex and a direction. ("tie-down")

 $v_1 = 0$

 $v_2 \parallel p_2 - p_1$

This eliminates 3 degrees of freedom.

The polyhedron lives in $2n-3$ dimensions.

The PPT polyhedron

$$
\bar{X}_f = \{ (v_1, \dots, v_n) \mid \exp_{ij} \ge f_{ij} \}
$$

\n• $f_{ij} := |p_i - p_j|^2 \cdot (|p_i|^2 + \langle p_i, p_j \rangle + |p_j|^2)$
\n• $f'_{ij} := [a, p_i, p_j] \cdot [b, p_i, p_j]$
\n[x, y, z] = signed area of the triangle xyz
\na, b: two arbitrary points.

Tight edges

For
$$
v = (v_1, \ldots, v_n) \in \overline{X}_f
$$
,

$$
E(v):=\{\,ij\mid \exp_{ij}=f_{ij}\,\}
$$

is the set of tight edges at v .

Maximal sets of tight edges \equiv vertices of $\bar{X}_f.$

What are good values of f_{ii} ?

Which configurations of edges can occur in a set of tight edges?

We want:

• no crossing edges

It is sufficient to look at 4-point subsets.

The PPT-polyhedron

 \rightarrow For every vertex $v, E(v)$ is non-crossing and pointed.

$$
\rightarrow |E(v)| \le 2n - 3
$$

- $\rightarrow |E(v)| = 2n-3$ and \bar{X}_f is a simple polyhedron.
- Every vertex is incident to $2n-3$ edges.
- Edge \equiv removing a segment from $E(v)$.

Removing an interior segment leads to an adjacent pseudotriangulation (flip).

Removing a hull segment is an extreme ray.

Good values f_{ij} for 4 points

In a set of tight edges, we want:

• no crossing edges

• no 3-star with all angles $\leq 180^\circ$

Good values f_{ij} for 4 points

 f_{ij} is given on six edges. Any five values \exp_{ij} determine the last one. Check if the resulting value \exp_{ij} of

the last edge is feasible $(\exp_{ij} \ge f_{ij})$

 \rightarrow checking the sign of an expression.

Good Values f_{ij} for 4 points

A 4-tuple p_1, p_2, p_3, p_4 has a unique self-stress (up to a scalar factor).

$$
\omega_{ij} = \frac{1}{[p_i, p_j, p_k] \cdot [p_i, p_j, p_l]}, \text{ for all } 1 \leq i < j \leq 4
$$

 $\omega_{ij} > 0$ for boundary edges. ω_{ij} < 0 for interior edges.

Why the stress?

If the equation

$$
\sum_{1\leq i
$$

holds, then f_{ij} are the expansion values \exp_{ij} of a motion $(v_1, v_2, v_3, v_4).$

Actually, "if and only if".

Why the stress?

If the equation

$$
\sum_{1\leq i
$$

holds, then f_{ij} are the expansion values \exp_{ij} of a motion $(v_1, v_2, v_3, v_4).$

Actually, "if and only if".

 $[M^T\omega = 0, f = \exp = Mv]$

Good perturbations

We need

$$
\omega_{12}f_{12} + \omega_{13}f_{13} + \omega_{14}f_{14} + \omega_{23}f_{23} + \omega_{24}f_{24} + \omega_{34}f_{34} > 0
$$

for all 4-tuples of points p_1, p_2, p_3, p_4 , with

$$
\omega_{ij}=\frac{1}{[p_i,p_j,p_k]\cdot [p_i,p_j,p_l]},\quad f_{ij}=[a,p_i,p_j][b,p_i,p_j]
$$

Good perturbations

We need

$$
\omega_{12}f_{12} + \omega_{13}f_{13} + \omega_{14}f_{14} + \omega_{23}f_{23} + \omega_{24}f_{24} + \omega_{34}f_{34} > 0
$$

for all 4-tuples of points p_1, p_2, p_3, p_4 , with

$$
\omega_{ij}=\frac{1}{[p_i,p_j,p_k]\cdot[p_i,p_j,p_l]},\quad f_{ij}=[a,p_i,p_j][b,p_i,p_j]
$$

 $\omega_{12}f_{12} + \omega_{13}f_{13} + \omega_{14}f_{14} + \omega_{23}f_{23} + \omega_{24}f_{24} + \omega_{34}f_{34} = 1$

Good perturbations

We need

$$
\omega_{12}f_{12} + \omega_{13}f_{13} + \omega_{14}f_{14} + \omega_{23}f_{23} + \omega_{24}f_{24} + \omega_{34}f_{34} > 0
$$

for all 4-tuples of points p_1, p_2, p_3, p_4 , with

$$
\omega_{ij} = \frac{1}{[p_i,p_j,p_k]\cdot [p_i,p_j,p_l]},\quad f_{ij} = [a,p_i,p_j][b,p_i,p_j]
$$

 $\omega_{12}f_{12} + \omega_{13}f_{13} + \omega_{14}f_{14} + \omega_{23}f_{23} + \omega_{24}f_{24} + \omega_{34}f_{34} = 1 > 0$

What is the meaning of $\sum_{1\leq i < j \leq 4} \omega_{ij} f_{ij} = 1$?

"I believe there is some underlying homology in this situation. Given the fact that motions and stresses also fit into a setting of cohomology and homology as well, the authors might, at least, mention possible homology descriptions."

[a referee, about the definition of ω_{ij}]

What is the meaning of $\sum_{1\leq i < j \leq 4} \omega_{ij} f_{ij} = 1$?

"I believe there is some underlying homology in this situation. Given the fact that motions and stresses also fit into a setting of cohomology and homology as well, the authors might, at least, mention possible homology descriptions."

[a referee, about the definition of ω_{ij}]

One can define a similar formula for ω for the k-wheel.

Cones and polytopes

- The expansion cone $\bar{X}_0 = \set{\exp_{ij} \geq 0}$
- The perturbed expansion cone $=$ the PPT polyhedron $\bar{X}_f = \set{\exp_{ij} \geq f_{ij}}$
- The PPT polytope $X_f = \{ \exp_{ij} \geq f_{ij},$ $\exp_{ij} = f_{ij}$ for ij on boundary }

The PPT polytope

Cut out all rays:

Change $\exp_{ij} \geq f_{ij}$ to $\exp_{ij} = f_{ij}$ for hull edges.

Theorem. For every set S of points in general position, there is a convex $(2n-3)$ -dimensional polytope whose vertices correspond to the pointed pseudotriangulations of S.

Extreme rays of the expansion cone

- The Expansion Cone \bar{X}_0 :
- collapse parallel rays into one ray. \rightarrow pseudotriangulations minus one hull edge. Rigid subcomponents are identified.
- Pseudotriangulations with one convex hull edge removed yield expansive mechanisms. [Streinu 2000]

Expansive motions for a chain (or a polygon)

- Add edges to form a pseudotriangulation
- Remove a convex hull edge
- $\bullet \rightarrow$ expansive mechanism

Theorem. Every polygonal arc in the plane can be brought into straight position, without self-overlap.

Every polygon in the plane can be unfolded into convex position.

[Connelly, Demaine, Rote 2001], [Streinu 2001]

The PT polytope

Vertices correspond to all pseudotriangulations, pointed or not.

Change inequalities $\exp_{ij} \geq f_{ij}$ to

$$
\exp_{ij}+(s_i+s_j)\|p_j-p_i\|\geq f_{ij}
$$

with a "slack variable" s_i for every vertex. $s_i = 0$ indicates that vertex i is pointed.

A "flip" may insert an edge, changing a vertex from pointed to non-pointed, or vice versa.

Faces are in one-to-one correspondence with all non-crossing graphs.

[Orden, Santos 2002]

Which f_{ij} to choose?

- $f_{ij} := |p_i p_j|^2 \cdot (|p_i|^2 + \langle p_i, p_j \rangle + |p_j|^2)$
- $f'_{ij} := [a, p_i, p_j] \cdot [b, p_i, p_j]$

Go to the space of the (\exp_{ij}) variables instead of the (v_i) variables.

 $\exp = Mv$

Characterization of the space $(\exp_{ij})_{i,j}$

A set of values $(\exp_{ij})_{1\leq i < j \leq n}$ forms the expansion values of a motion (v_1, \ldots, v_n) if and only if the equation

$$
\sum_{1\leq i
$$

holds for all 4-tuples.

[SKIP](#page-66-0)

A canonical representation

 $\sum \omega_{ij} \exp_{ij} = 0$, for all 4-tuples $1\leq i < j \leq 4$ $\exp_{ij} \ge f_{ij}$, for all pairs i, j

A canonical representation

$$
\sum_{1 \leq i < j \leq 4} \omega_{ij} \exp_{ij} = 0, \text{ for all 4-tuples}
$$
\n
$$
\exp_{ij} \geq f_{ij}, \text{ for all pairs } i, j
$$

$$
\sum_{1 \leq i < j \leq 4} \omega_{ij} f_{ij} = 1, \text{ for all 4-tuples}
$$
\nSubstitute $d_{ij} := \exp_{ij} - f_{ij}$:

$$
\sum_{1 \le i < j \le 4} \omega_{ij} d_{ij} = -1, \text{ for all 4-tuples} \tag{1}
$$
\n
$$
d_{ij} \ge 0, \text{ for all } i, j \tag{2}
$$

The associahedron

Catalan structures

- Triangulations of a convex polygon $/$ edge flip
- Binary trees / rotation

• .

• $(a * (b * (c * d))) * e / ((a * b) * (c * d)) * e$

The secondary polytope

Triangulation $T \mapsto (a_1, \ldots, a_n)$.

 $a_i := \mathsf{total}$ area of all triangles incident to p_i

vertices \equiv regular triangulations of (p_1, \ldots, p_n)

 (p_1, \ldots, p_n) in convex position: p seudotriangulations \equiv triangulations \equiv regular triangulations.

 \rightarrow two realizations of the associahedron.

These two associahedra are affinely equivalent.

Expansive motions in one dimension

$$
\{ (v_i) \in \mathbb{R}^n \mid v_j - v_i \ge f_{ij} \text{ for } 1 \le i < j \le n \}
$$

For example, $f_{ij} := (i - j)^2$.

 \rightarrow gives rise to *different* realizations of the associahedron. [Gelfand, Graev, and Postnikov 1997], in a dual setting. [Postnikov 1997], [Zelevinsky ?], [Stasheff 1997]

The associahedron

3. Locally convex surfaces Motivation: the reflex-free hull

an approach for recognizing pockets in biomolecules

[Ahn, Cheng, Cheong, Snoeyink 2002]
Locally convex functions

A function over a polygonal domain P is locally convex if it is convex on every segment in P .

Locally convex functions

A function over a polygonal domain P is locally convex if it is convex on every segment in P .

Locally convex functions on a poipogon

A poipogon (P, S) is a simple polygon P with some additional vertices inside.

Given a poipogon and a height value h_i for each $p_i \in S$, find the highest locally convex function $f\colon P\to\mathbb{R}$ with $f(p_i)\leq h_i.$

If P is convex, this is the lower convex hull of the threedimensional point set (p_i,h_i) .

In general, the result is a piecewise linear function defined on a pseudotriangulation of (P, S) . (Interior vertices may be missing.)

 \rightarrow regular pseudotriangulations

[Aichholzer, Aurenhammer, Braß, Krasser 2003]

The surface theorem

In a pseudotriangulation T of (P, S) , a vertex is complete if it is a corner in all pseudotriangulations to which it belongs.

Theorem. For any given set of heights h_i for the complete vertices, there is a unique piecewise linear function f on the pseudotriangulation with theses heights. The function depends monotonically on the given heights.

In a triangulation, all vertices are complete.

Proof of the surface theorem

Each incomplete vertex p_i is a convex combination of the three corners of the pseudotriangle in which its large angle lies:

$$
p_i = \alpha p_j + \beta p_k + \gamma p_l, \text{ with } \alpha + \beta + \gamma = 1, \ \alpha, \beta, \gamma > 0.
$$

$$
\rightarrow h_i = \alpha h_j + \beta h_k + \gamma h_l
$$

 h is a *harmonic function* on the incomplete vertices.

Proof of the surface theorem

Each incomplete vertex p_i is a convex combination of the three corners of the pseudotriangle in which its large angle lies:

$$
p_i = \alpha p_j + \beta p_k + \gamma p_l, \text{ with } \alpha + \beta + \gamma = 1, \ \alpha, \beta, \gamma > 0.
$$

$$
\rightarrow h_i = \alpha h_j + \beta h_k + \gamma h_l
$$

 h is a *harmonic function* on the incomplete vertices. The coefficient matrix of the mapping $M : (h_1, \ldots, h_n) \mapsto$ (h_1) $\mathcal{H}_1',\ldots, h_n')$ is a stochastic matrix. M is a monotone function, and M^n is a contraction. \rightarrow There is always a unique solution.

Flipping to optimality

Find an edge where convexity is violated, and flip it.

A flip has a non-local effect on the whole surface. The surface moves down monotonically.

Realization as a polytope

Theorem. There exists a convex polytope whose vertices are in one-to-one correspondence with the regular pseudotriangulations of a poipogon, and whose edges represent flips.

[Aichholzer, Aurenhammer, Braß, Krasser 2003]

Pseudotriangulation $T \mapsto (a_1, \ldots, a_n)$:

$$
\int_P f(x,y) dx dy = a_1 h_1 + \cdots + a_n h_n
$$

 $(a_i = 0$ for all incomplete vertices p_i .) T is represented by the point $(a_1,\ldots,a_n)\in\mathbb{R}^n.$

For a simple polygon (without interior points), all pseudotriangulations are regular.

4. Canonical pseudotriangulations

Maximize/minimize $\sum_{i=1}^n c_i \cdot v_i$ over the PPT-polytope.

Delaunay triangulation $\mathsf{Max}/\mathsf{Min}\sum p_i\cdot v_i$ (affinely invariant)

(Can be constructed as the lower/upper convex hull of lifted points.) [André Schulz]

Edge flipping criterion for canonical pseudotriangulations of 4 points in convex position

Maximize/minimize the product of the areas. (Also for 4 points in non-convex position) Invariant under affine transformations.

The "Delone pseudotriangulation" for 100 random points

The "Anti-Delone pseudotriangulation" for 100 random points

The Maxwell-Cremona Correspondence [1864/1872]

self-stresses on a planar framework

 \mathcal{D} one-to-one correspondence reciprocal diagram \mathcal{D} one-to-one correspondence

3-d lifting (polyhedral terrain)

Valley and mountain folds

 $\omega_{ij} > 0$ $\omega_{ij} < 0$

valley mountain

bar or strut bar

The Maxwell-Cremona Correspondence for closed polyhedral surfaces

Geometric construction of the Delone pseudotriangulation for convex position

[Günter Rote, André Schulz]

minimize
$$
\langle v_i, p_i \rangle
$$

subject to $\langle v_i - v_j, p_i - p_j \rangle \ge f_{ij}$
 $\sum v_i = 0$

Consider the dual linear program in variables $\omega_{ij} = \omega_{ji} \geq 0$.

maximize some objective function subject to $\sum_j \omega_{ij} (p_j - p_i) = \bar{p} - p_i$, for all i $\omega_{ij} \geq 0.$

with $\bar{p} = \sum p_i / n =$ center of gravity.

The dual variables are stresses

$$
\sum_j \omega_{ij}(p_j-p_i)=\bar{p}-p_i
$$

 $\omega_{ij} = \omega_{ji} \in \mathbb{R}$ are stresses on the edges. Consider $p_0 := \bar{p}$ as an additional vertex with $\omega_{0i} = -1$: Equilibrium of forces in vertex i : p_j

 $\widetilde{p_i}$

 $\mathscr{L}_{ij}(p_j-p_i)$

$$
\sum_{j=0}^{n} \omega_{ij}(p_j - p_i) = 0
$$

 \overline{n}

Stresses

The optimum primal solution will have $\langle v_i - v_j, p_i - p_j \rangle = f_{ij}$ on some pseudotriangulation $E(v)$.

Complementary slackness implies that $\omega_{ij} = 0$ for $ij \notin E(v)$.

Stresses in the convex case

 $E(v)$ together with the additional edges $p_i p_0$ is a planar graph.

Maxwell-Cremona theorem \rightarrow lifting of a polytope: Overlay of

- a convex lifting of the triangulation $E(v)$ and
- a pyramid formed by p_0 and the convex polygon $p_1p_2 \ldots p_n$.

The lifting in the convex case

The stresses on the spokes p_0p_i are known $(\omega_{0i} = -1)$ \rightarrow the heights of p_1, p_2, \ldots, p_n can be computed. The lower convex hull of these points gives the "Delone" (pseudo-)triangulation.

The upper convex hull of the same lifted points gives the "anti-Delone" (pseudo-)triangulation.

Calculation of the heights

Let $p_1p_2 \ldots p_n$ be a convex polygon. $\sum (p_i - p_0) = 0$ by definition. Form a new "sum polygon" whose sides are $p_i - p_0$:

$$
P_i - P_{i-1} = p_i - p_0
$$

Calculation of the heights

Let $p_1p_2 \ldots p_n$ be a convex polygon. $\sum (p_i - p_0) = 0$ by definition. Form a new "sum polygon" whose sides are $p_i - p_0$:

$$
P_i - P_{i-1} = p_i - p_0
$$

Define height of $p_i := [a, P_{i-1}, P_i]$ for an arbitrary point a .

Minimal pseudotriangulations

Minimal pseudotriangulations (w.r.t. \subseteq) are not necessarily minimum-cardinality pseudotriangulations.

A minimal pseudotriangulation has at most $3n-8$ edges, and this is tight for infinitely many values of n .

[Rote, C. A. Wang, L. Wang, Y. Xu 2003]

Pseudotriangulations in 3-space?

Rigid graphs are not well-understood in 3-space.