The tropical rank of a matrix

(Joint work with F. Santos and B. Sturmfels)

Mike Develin, AIM/MSRI develin@msri.org http://msri.org/~develin/

Ordinary linear algebra

One of the most important notions in ordinary linear algebra over a field is that of the rank of a matrix M . The following definitions are all equivalent in that setting.

Definition. *The rank of* M *is the largest number* r such that M has a nonsingular $r \times r$ minor.

Definition. *The rank of* M *is the dimension of the set of linear combinations of its rows (or columns).*

Definition. *The rank of* M *is the dimension of the smallest linear space containing its rows (or columns).*

Definition. *The rank of* M *is the smallest* r *for which* M *can be written as the sum of* r *rank-1 matrices.*

The equivalence of these four definitions is trivial. However, in a more generalized setting, these definitions diverge.

 $-$ Typeset by FoilT_FX $-$ 2

The tropical semiring

Our goal is to do linear algebra over a setting without additive inverses, in particular the tropical semiring.

Definition. *The tropical semiring is* $(\mathbb{R}, \oplus, \odot)$ *, that is the real numbers under the operations of tropical is, the real numbers under the operations of tropical* $addition \oplus given \ by \ a \oplus b = min(a, b) \ and \ tropical$ *multiplication* \odot *given by* $a \odot b = a + b$ *.*

Sometimes R is augmented by the element $+\infty$, in the obvious way. We will be working over the spaces \mathbb{R}^n , viewed as a semimodule over the tropical semiring:

$$
k \odot (x_1, \ldots, x_n) = (k + x_1, \ldots, k + x_n)
$$

 $(x_1,...,x_n) \oplus (y_1,...,y_n) = (\min(x_1, y_1), ..., \min(x_n, y_n))$

Example. $6 \odot (3, 1, 3) \oplus 5 \odot (2, 3, 4) = (9, 7, 9) \oplus (7, 8, 9) = (7, 7, 9)$ $(7, 8, 9) = (7, 7, 9).$

Tropical convexity

In ordinary linear algebra, the set of linear combinations of a given set of vectors is analogous to its convex hull rather than its linear hull.

Theorem (D. & Sturmfels, 2003). *Given a set of vectors* $V \subset \mathbb{R}^n$, the set of tropical linear *combinations of elements of* V *has lineality space* (1, ..., 1)*, and upon modding out by this vector, the resulting subset of* $\mathbb{TP}^{n-1} := \mathbb{R}^n/(1,\ldots,1)$ *is*
bounded We call this the tronical conver hull of V *bounded. We call this the tropical convex hull of* V *.*

Tropical rank

Definition. *The tropical rank of a matrix is the dimension of the convex hull of its rows (or columns), viewed as a subset of* \mathbb{R}^n .

Example. *The matrix below has tropical rank 3.*

Proposition. *The tropical rank of a matrix is the size of its largest tropically nonsingular minor.*

A matrix is tropically nonsingular if the tropical determinantal sum

$$
\bigoplus_{\sigma \in S_n} (\bigodot_{i \in [n]} M_{i\sigma(i)})
$$

achieves its indicated minimum twice.

```
- Typeset by FoilT<sub>F</sub>X - 5
```
Algebraic geometry

Consider the field K of power series with discrete real exponents including a minimal one, i.e. $c_1t^{a_1} +$ $c_2t^{a_2} + \cdots$ with $a_i \in \mathbb{R}$ and $a_1 < a_2 < \cdots$. (The c_i 's are taken from some ground field k , usually \mathbb{C} .)

Let deg : $K \to \mathbb{R}$ be the degree map taking this element to a_1 . Then we have $deg(fg) = deg(f) +$ $deg(g)$, while unless there is a cancellation of leading terms we also have $deg(f + g) = min(deg(f), deg(g)).$ Thus the tropical operations are the images of the ordinary operations under the degree map.

If we have an ideal I in $K[x_1, \ldots, x_n]$, we can define a corresponding tropical variety $\mathcal{T}(I)$ as the image under the degree map of its ordinary vanishing set $V(I)$. For every element $f \in I$ and point $v \in \mathcal{T}(I)$, we must have the tropicalization of f achieve its minimum twice on v (so as to obtain a cancellation of leading terms); indeed, this is equivalent if k is algebraically closed. This is why the natural definition of a tropical polynomial f vanishing on a point v is that it achieves its minimum twice.

 $-$ Typeset by FoilT_FX $-$ 6

Kapranov rank

Definition. *The Kapranov rank of a tropical matrix* M *is equal to the dimension of the smallest tropical linear subspace* $(T(I))$ *for a linear ideal* $I)$ *containing the rows (or columns) of* M*.*

This is equivalent to two other interesting concepts.

Theorem. For a real matrix $M = (m_{ij}) \in \mathbb{R}^{m \times n}$ the *following statements are equivalent:*

- *(a) The Kapranov rank of* M *is at most* r*.*
- (b) There exists an $m \times n$ -matrix $F = (f_{ij}(t))$ with
non-zone entries in the field \tilde{K} exist that the real *non-zero entries in the field* K˜ *such that the rank of* F *is less than or equal to* r *and* $deg(f_{ij}) = m_{ij}$ *for all* i *and* j*.*
- *(c) The matrix* M *lies in the tropical determinantal variety* $\mathcal{T}(J_{r+1})$ *.*

Tropical linear spaces

The tropical linear spaces important in the definition of Kapranov rank are parametrized by the tropical Grassmannian. Hyperplanes are the tropical vanishing sets of a single tropical linear function \Leftrightarrow - $a_i \odot$
two of wk $\odot x_i$; in \mathbb{TP}^{n-1} , this consists of all points
whose coordinates are the corresponding a 's two of whose coordinates are the corresponding a_i 's,
and the others of which exceed a_i . Tronical lines are and the others of which exceed a_i . Tropical lines are trees with n leaves going off to infinity, where n is the dimension of the ambient space.

Barvinok rank

Definition. *The Barvinok rank of a matrix* M *is the smallest* r *for which* M *can be written as the tropical sum of* r *matrices of tropical rank one.* **Example.** *The matrix*

$$
\begin{pmatrix}\n0 & 4 & 2 \\
2 & 1 & 0 \\
2 & 4 & 3\n\end{pmatrix} = \begin{pmatrix}\n0 & 4 & 2 \\
2 & 6 & 4 \\
2 & 6 & 4\n\end{pmatrix} \oplus \begin{pmatrix}\n9 & 7 & 6 \\
3 & 1 & 0 \\
6 & 4 & 3\n\end{pmatrix}
$$

has Barvinok rank two.

It also has Kapranov rank two. A lift which demonstrates this is:

$$
\begin{pmatrix}\n1 & t^4 & t^2 \\
t^2 & t & 1 \\
t^2 + t^5 & t^4 + t^6 & t^3 + t^4\n\end{pmatrix}
$$

Its rows lie in the vanishing set of the linear function

$$
2 \cdot x_0 \oplus (-1) \cdot x_1 \oplus 0 \cdot x_2.
$$

 $-$ Typeset by FoilT $EX -$

More on Barvinok rank

Barvinok rank arises naturally in combinatorial optimization, where given a distance matrix of fixed Barvinok rank r , there exists a polynomial time to solve the corresponding traveling salesman problem. It also has connections to both tropical convexity and tropical algebraic geometry.

Proposition. *Let* M *be a real* m [×] n*-matrix. The following properties are equivalent:*

- *(a)* M *has Barvinok rank at most* r*.*
- *(b) The rows of* M *lie in the tropical convex hull of* r $points in \mathbb{TP}^{n-1}.$
- *(c)* M *lies in the image of the following tropical morphism, which is defined by matrix multiplication:*

 ϕ_r : $\mathbb{R}^{m \times r} \times \mathbb{R}^{r \times n} \to \mathbb{R}^{m \times n}$, $(X, Y) \mapsto X \odot Y$.

An example

Consider the example

This has tropical and Kapranov ranks 2, but Barvinok rank 3. In general, the tropical and Kapranov ranks of C_n are 2 for all n , while the Barvinok rank grows as $\log_2 n$.

Comparison of ranks

Theorem. *The tropical rank of a matrix is always less than or equal to its Kapranov rank, which in turn is less than or equal to its Barvinok rank.*

The difference from ordinary linear algebra is that these inequalities can be strict. We have already seen that the Kapranov rank can be less than the Barvinok rank; however, the tropical rank can also be less than the Kapranov rank. In particular, there exists a set of points whose convex hull is 3-dimensional, but which do not lie in any 3-dimensional linear subspace.

To do this we use another connection between tropical rank and classical mathematics, this time via matroids.

Cocircuit matrix of a matroid

Given a matroid M , we make the following definition.

Definition. *The cocircuit matrix of a matroid* M*, denoted* C(M) *has its rows indexed by the ground set of* M *and its columns indexed by the cocircuits of* ^M*. It has a 0 in entry* ij *if element* i *is in cocircuit* j*, and a 1 otherwise.*

The cocircuit matrix is actually a well-known object associated to a matroid, in disguise.

Proposition. *The tropical convex hull of the columns of* C(M) *is the Bergman complex of* M*.*

Theorem. *The tropical rank of* C(M) *is equal to the rank of* M*. The Kapranov rank of* C(M) *over a field* k *is equal to the rank of* ^M *if and only if* ^M *is representable over* k*.*

 $-$ Typeset by FoilT_FX $-$ 13

An example: the Fano matroid

The Fano matroid has cocircuit matrix

$$
\mathcal{C}(\mathcal{M}) = \left(\begin{array}{cccccc} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{array}\right)
$$

It is the smallest known example both in dimension and number of points of a matrix whose Kapranov rank over $\mathbb C$ strictly exceeds its tropical rank.

Some more cases

Theorem. *If a matrix has Kapranov rank* n*, it has tropical rank* n*. If a matrix has tropical rank 2, it has Kapranov rank 2.*

We can consider the space of all $m \times n$ matrices of Kapranov rank 2. This is a polyhedral complex in $\mathbb{R}^{m \times n}$, which has some trivial components. When we remove these, we have the following results:

Proposition. *The space of* ³×n *matrices of Kapranov rank two is a shellable simplicial complex, with top homology free of dimension* $2^n - 3$ *.*

Proposition. *The space of* 4×4 *matrices of Kapranov rank two has top homology free of dimension 73 and no other homology.*

Are these spaces shellable in general?

The space of 4×4 matrices of Barvinok rank two, on the other hand, has homology $\mathbb{Z}/2$ in dimensions 1 and 2 and $\mathbb Z$ in dimension 4. What is going on here?

 $-$ Typeset by FoilT_FX $-$ 15