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Two problems

d-dimensional Heilbronn triangle problem

What is the smallest fy(n) such that any set
of n points in the d-dimensional unit cube
contains d + 1 points that span a simplex of
volume at most fy(n) 7

d-dimensional MinMax triangulation problem

What is the largest gg(n) such that any set of
n points in the d-dimensional space, in general
position, allows some triangulation with at least
ga(n) simplices 7

1
Connection: fa(n) <
ga(n)
In the following look at d = 3, but all the

arguments for the first problem generalize to

all odd dimensions, and all for the second to
all higher dimensions.



The Heilbronn triangle problem (1)

The original Heilbronn triangle problem is the
planar version: what is the maximum area of
the smallest-area triangle that can be reached
by proper choice of n points in the unit square?

Such a set is as far as possible from containing
three collinear points.

This problem was originally asked by P. Helil-
bronn, and studied in many papers by Roth,
Schmidt, and Komlos, Pintz and Szemerédi.
Exact values were determined for up to 7
points.



The Heilbronn triangle problem (2)

There is a simple lower bound of 2%2,2:
select from the n X n integer grid square
a subset of n points without three collinear
points (e.g. by a modular quadratic curve: ‘no-
three-in-line problem’). Any triangle spanned
by integer-coordinate points has an area which
is a multiple of % So 1if there are no three
collinear points, then the area of each spanned
triangle is at least % Scaling down to the unit

square gives a set of n points with all triangles

of area at least —.
2n?

There is a trivial upper bound: Any triangu-
lation of the set has at least n — 2 triangles,
which are disjoint and contained in the unit

square, so there is one with area less than
1

n—2

Neither bound give the right order.



The d-dimensional

Heilbronn problem (1)

The d-dimensional analogue of the Heilbronn
triangle problem was first noticed by Barequet
in 2000.It asks for the maximum over all
choices of n points from the unit cube of the
volume of the smallest spanned simplex. Again
such a set 1s as much as possible in ‘general
position’: as far as possible from having d + 1
coplanar points.

The lower bound generalizes: one can select
n points with no d 4+ 1 coplanar from the

n X --- X n integer lattice cube, which gives a

1
lower bound of pTl

This bound was improved by Lefmann to
cqlogn

nd '
famous planar Komlos-Pintz-Szemerédi lower

bound.

which also gave a new proof of the



The d-dimensional

Heilbronn problem (2)

The upper bound also generalizes, we can tri-
angulate any set of n points and obtain (n)
simplices. So the smallest simplex has volume
O(+). A nontrivial bound on g(n) would im-

prove this bound.

This 1s the only known upper bound, weaker
than in the planar case.

Theorem: Any set of n point in the
three-dimensional unit cube

determines a simplex of volume
7

O(n™#).

This generalizes to give O(n~17%)) in any odd
dimension d > 3.

logn

The lower bound is ).

ns



The d-dimensional

Heilbronn problem (3)

Proof: For any ¢ > 1 the maximum number
of points in the unit cube with all pairwise
distances larger 5 1'ig less than ct?. So n points
in the unit cube determine at least ' pomt

pairs with distance smaller than 1 7.

Each point pair determines a direction, which
are all distinct. The minimum angular distance

between them is at most ¢” (”—2

—3
t3> , SO one can

select two edges which are

e short, length less than 2 7, and

e almost parallel, angular distance less than

_1
1 [ n? 2

These two edges determine a simplex of volume
" 1

t2n
t = (cn)1, proves the theorem.

less than ¢"'+—. Choosing t as large as possible,



Triangulations

Given a set X of n points in d-dimensional
space, a triangulation T of X is a division of
the convex hull conv(X) into non-degenerate
simplices such that

- the vertices of each simplex are points of X,
- each simplex contains no other points of X

but its vertices,

- the interiors of the simplices are disjoint, and
- the union of the simplices is conv(X).

To avoid degeneracies, we will in the following
always assume that the points are in general
position: no d + 1 points on a hyperplane.

Otherwise there are sets with a unique trian-
gulation.



The size of a triangulation (1)

A point set in general position has many
triangulations

but in the plane, all triangulations of one set
have the same number of triangles.

This is a consequence of the interior angle sum
theorem: each triangle has an interior angle sum
of m, and each point of X in the interior of
conv(X) contributes an angle sum of 27 that
has to occur in the adjacent triangles. It there
are k points on the boundary of conv(X), they
contribute an angle sum of (k — 2)mw, so the
number of triangles is 2n — k — 2.



The size of a triangulation (2)

This does not hold in higher-dimensional space,
since there is no analogue of the interior angle
sum theorem. There are simplices with arbitrary
small sums of vertex angles.

A classical example is that the cube can be
divided in five or six simplices. If one cuts off
alternating vertices, one gets a division into
four outer and one central simplex; if one first
halves the cube into two triangular prisms, one
obtains six congruent simplices.

In fact it is a well-known open problem to bound the min-
imum number of simplices required in a triangulation of the
d-dimensional cube; the maximum number is d!, since each non-
degenerate simplex with integer vertex coordinates has volume at

least %.

This suggest that one should ask for the size,
the number of simplices, of d-dimensional tri-
angulations.



The size of a triangulation (3)

The minimal size of any triangulation of any set
of n points in general position in d-dimensional
space 1S n — d.

The maximal size of any triangulation of any set
of n points in general position in d-dimensional
space is hg(n +1,d +1) — (d 4+ 1) = O(nl2),
where hg(n+1,d+ 1) is the number of d-faces
of the d 4+ 1-dimensional cyclic polytope on
n + 1 vertices.

B.L. Rothschild, E.G. Straus 1985

Does every set have a small triangulation?
Yes: O(n) in general, < 3n — 11 for d =3

Does every set have a large triangulation”?
?

H. Edelsbrunner, F.P. Preparata, D.B. West 1990



MinMax Triangulations (1)

What is the minimum over all sets of n points

of the maximum size of any triangulation of
that set?

What is the largest g4(n) such that any set
of n points in d-dimensional space, in general
position, has some triangulation with at least
ga(n) simplices?

In the following we consider only the three-
dimensional case.

Edelsbrunner et al. obtained only the trivial
bounds: g3(n) = Q(n) and g3(n) = O(n?).

5

Theorem: g3(n) = O(n3).



MinMax Triangulations (2)

The theorem claims there is a set of n points
in three-dimensional space, in general position,
that does not allow any triangulation with
more than O(n3) simplices.

oooooooooooo
oooooooooooo
oooooooooooo
oooooooooooo
oooooooooooo
oooooooooooo

oooooooooooo
oooooooooooo
oooooooooooo
oooooooooooo
oooooooooooo
oooooooooooo

The n3 X ni X n3 lattice cube is not in general
position, but there are only O(n) nondegenerate
simplices in any triangulation of the lattice
cube, since each nondegenerate simplex has
volume at least %



MinMax Triangulations (3)

If we perturb each point of the lattice cube

by a small amount, we obtain a set in general

position. Each simplex in any triangulation of

this set belongs to one of three classes:

- big simplices: nondegenerate in the unper-
turbed set.

- flat simplices: planar in the unperturbed set.

- needle simplices: collinear in the unperturbed
set.

There are only O(n) big simplices, so we have
to bound the numbers of flat and needle sim-
plices. We do this by studying their preimages
i the unperturbed lattice cube.



MinMax Triangulations (4)

Each flat simplex belongs in the unperturbed
version of the point set to some lattice plane.

Consider such a plane containing a flat simplex,
and its intersection with the big simplices. The
flat simplices contained in this plane cannot
intersect the interior of any big simplex, so
they must be contained in the union of faces
of big simplices that lie in this plane.

So flat simplices occur only in the planes
spanned by faces of the big simplices, and the
vertices of the flat simplices must be vertices
of faces of big simplices in that plane.



MinMax Triangulations (5)

Let (E;)ie;r be the planes that contain flat
simplices, and

a;

bi

Together this implies )

be the number of faces of big simplices
contained in £,

be the number of points that are vertex of
some flat simplex contained in FE;

. be the number of flat simplices contained in

Ez'- Then

> ;@i = O(n): there are only O(n) faces on
the O(n) big simplices.

b; = O(a;): each face contributes at most
three vertices to the plane.

2

b; = O(n3): no plane contains more than n
lattice points.
¢; = O(b?): The number of simplices spanned

by b; points is O(b?).
¢; = O(n3). The

el

same argument works for the needle simplices.



Further problems

Problem: Find a nontrivial lower bound for
ga(n).

Problem: Find a better upper bound for
fd(n)

The angle-sum argument shows that in a tri-

angulation with many simplices, almost all of

them must have small interior angle sum, so

they are almost flat.

S0 a point set in which any simplex spanned

by the set has a large interior angle sum would

give an upper bound for g.

Problem: What is the maximum over all
sets of n points in d-dimensional
space of the minimum interior

angle sum of a simplex spanned
by that set?



