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DEFINITION. Let A ⊂ Zn be finite and f

be A−supported polynomial. A−dis-

criminant is the polynomial in the coef-

ficients of f which equals zero if f and gradf

vanish simultaneously.

EXAMPLE. A = {0, 1, 2} ⊂ Z,

f = ay2 + by + c.

A−discriminant: b2 − 4ac.

EXAMPLE. For

A = {(0, 0), (1, 0), . . . , (m, 0),

(0, 1), (1, 1), . . . , (n, 1)} ⊂ Z2,

the corresponding A−discriminant is the

resultant of two univariate polynomials.

EXAMPLE. A−discriminant of a bili-

near form
∑

aijxiyj is the determinant

of the matrix (aij).
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DEFINITION. Let f be a Laurent poly-

nomial

f =
∑

α

cα1,...,αn x
α1
1 . . . xαn

n .

Its amoeba Af is defined to be the image

of the hypersurface {f = 0} under the

mapping

Log : (x1, . . . , xn) 7→ (log|x1|, . . . , log|xn|).
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EXAMPLE. The discriminant of the poly-

nomial

y3 + x1 y2 + x2 y − 1

is given by

x2
1x

2
2 + 4x3

1 − 4x3
2 − 18x1x2 − 27. (1)

The Newton polytope and the amoeba

of (1):
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Connected components of the amoeba

complement are convex.
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PROBLEM. How to describe the zero

locus of an A−discriminant?

THEOREM. (Kapranov, 1991) A−dis-

criminantal hypersurface is birationally

equivalent to the projective space.

THEOREM. (Gelfand, Kapranov, Zele-

vinsky, 1994) The Newton polytope of

the discriminant of a univariate polyno-

mial is combinatorially equivalent to a

cube.
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THEOREM. (Forsberg, Passare, Tsikh,

2000)

# vertices of Nf ≤ # cAf ≤ # Nf ∩ Zn.

DEFINITION. A polynomial (an amoeba,

a hypersurface) is called solid, if the lower

bound is attained.

THEOREM. A-discriminants have solid

amoebas.
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DEFINITION. A function is called hy-

pergeometric if it satisfies a regular holo-

nomic system of the form

xiPi(θ) − Qi(θ), i = 1, . . . , n, (2)

where Pi and Qi are nonzero polynomi-

als and

θ =

(

x1
∂

∂x1
, . . . , xn

∂

∂xn

)

.

Let J = (x1P1(θ) − Q1(θ), . . . , xnPn(θ) − Qn(θ)),

char (J) =

{(x, z) ∈ C2n : σ(P )(x, z) = 0, ∀P ∈ J}.

THEOREM. (Bernstein, 1972) The di-

mension of the characteristic variety of

a system in n variables is ≥ n.

Holonomic: The dimension of the char-

acteristic variety of (2) equals n.
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THEOREM (Dickenstein, Matusevich,

Sadykov, 2003). A bivariate hypergeo-

metric system is generically holonomic.

Regular: No torsion + moderate growth

of solutions in a neighbourhood of a sin-

gularity in Pn.

EXAMPLE. The system of equations

x1θ1(θ1 + θ2) − (θ1 + 1)(θ1 + θ2),

x2θ2(θ1 + θ2) − (θ2 + 1)(θ1 + θ2)

is not regular holonomic. Any function

on the projective line is a solution to it.
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EXAMPLE.

The system of differential equations:

x(1 − x)∂2
x − xy∂x∂y + (c − (a + b + 1)x)∂x − by∂y − ab,

y(1 − y)∂2
y − xy∂x∂y + (c′ − (a + b′ + 1)y)∂y − b′x∂x − ab′

is regular holonomic for generic param-

eters.

The singular locus of this system:

S = {xy(1 − x)(1 − y)(1 − x − y) = 0}.
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THEOREM.

A basis in the solution space of a hyper-

geometric system with commuting op-

erators and generic parameters has the

form

yI(x) =
∑

k∈Nn

ϕ(k)(tx)k+γI,

where

ϕ(k) =

p
∏

i=1
Γ(〈Ai, k + γI〉 + ci)

n
∏

ν=1

dν
∏

j=1
Γ(kν + uνj + 1)

.

THEOREM. Singularities of hypergeo-

metric functions are algebraic and solid.
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EXAMPLE.

f =
∑

k1,k2≥0

Γ(k1 + k2 + 1)

Γ(k1 + 1)Γ(k2 + 1)
x

k1
1 x

k2
2

=
1

1 − x1 − x2

g =
∑

k1,k2≥0

Γ(k1 + 2k2 + 2)

Γ(k1 + 1)Γ(2k2 + 2)
x

k1
1 x

k2
2

=
1

(1 − x1)2 − x2

f � g =
∑

k1,k2≥0

Γ(k1 + k2 + 1)Γ(k1 + 2k2 + 2)

Γ2(k1 + 1)Γ(k2 + 1)Γ(2k2 + 2)
x

k1

1 x
k2

2

4x3
1 − x2

1x2 − 12x2
1 + 20x1x2 − 4x2

2

+12x1 + 8x2 − 4
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THEOREM.

The Hadamard product of double non-

confluent hypergeometric series corre-

sponds to the Minkowski sum of the New-

ton polytopes of the polynomials which

define their singularities.
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REMARKS.

1. Not every solid polynomial deter-

mines the singularity of a hypergeomet-

ric function.

2. In two variables, any convex integer

polygon is the Newton polytope of some

polynomial which defines the singularity

of a hypergeometric function.

3. Discriminants of univariate polyno-

mials have solid amoebas.
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