THE AMOEBA OF A DISCRIMINANT

MIKAEL PASSARE, TIMUR SADYKOV AND AUGUST TSIKH

FEBRUARY 23, 2004

DEFINITION. Let $A \subset \mathbb{Z}^n$ be finite and fbe A-supported polynomial. A-discriminant is the polynomial in the coefficients of f which equals zero if f and grad fvanish simultaneously.

EXAMPLE. $A = \{0, 1, 2\} \subset \mathbb{Z},$ $f = ay^2 + by + c.$ A-discriminant: $b^2 - 4ac.$

EXAMPLE. For $A = \{(0,0), (1,0), \dots, (m,0), \ (0,1), (1,1), \dots, (n,1)\} \subset \mathbf{Z}^2,$

the corresponding A-discriminant is the resultant of two univariate polynomials.

EXAMPLE. A-discriminant of a bilinear form $\sum a_{ij}x_iy_j$ is the determinant of the matrix (a_{ij}) . DEFINITION. Let f be a Laurent polynomial

$$f=\sum_lpha c_{lpha_1,...,lpha_n} \ x_1^{lpha_1}\dots x_n^{lpha_n}.$$

Its amoeba \mathcal{A}_f is defined to be the image of the hypersurface $\{f = 0\}$ under the mapping

 $\operatorname{Log}: (x_1, \ldots, x_n) \mapsto (\log |x_1|, \ldots, \log |x_n|).$

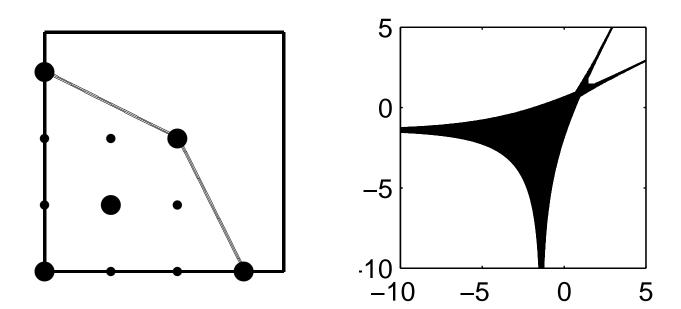
EXAMPLE. The discriminant of the polynomial

$$y^3 + x_1 y^2 + x_2 y - 1$$

is given by

$$x_1^2 x_2^2 + 4x_1^3 - 4x_2^3 - 18x_1x_2 - 27.$$
 (1)

The Newton polytope and the amoeba of (1):



Connected components of the amoeba complement are convex.

PROBLEM. How to describe the zero locus of an A-discriminant?

THEOREM. (Kapranov, 1991) A-discriminantal hypersurface is birationally equivalent to the projective space.

THEOREM. (Gelfand, Kapranov, Zelevinsky, 1994) The Newton polytope of the discriminant of a univariate polynomial is combinatorially equivalent to a cube. THEOREM. (Forsberg, Passare, Tsikh, 2000)

vertices of $\mathcal{N}_f \leq \#^c \mathcal{A}_f \leq \# \mathcal{N}_f \cap \mathbf{Z}^n$.

DEFINITION. A polynomial (an amoeba, a hypersurface) is called *solid*, if the lower bound is attained.

THEOREM. A-discriminants have solid amoebas.

DEFINITION. A function is called *hypergeometric* if it satisfies a regular holonomic system of the form

$$x_i P_i(\theta) - Q_i(\theta), \quad i = 1, \dots, n,$$
 (2)

where P_i and Q_i are nonzero polynomials and

$$heta = \left(x_1 rac{\partial}{\partial x_1}, \dots, x_n rac{\partial}{\partial x_n}
ight).$$

 $egin{aligned} &\mathrm{Let}\,\, J = (x_1P_1(heta) - Q_1(heta), \dots, x_nP_n(heta) - Q_n(heta)), \ &\mathrm{char}\,\,(J) = \ &\{(x,z)\in\mathrm{C}^{2n}:\sigma(P)(x,z) = 0,\, orall P\in J\}. \end{aligned}$

THEOREM. (Bernstein, 1972) The dimension of the characteristic variety of a system in n variables is $\geq n$.

Holonomic: The dimension of the characteristic variety of (2) equals n.

THEOREM (Dickenstein, Matusevich, Sadykov, 2003). A bivariate hypergeometric system is generically holonomic.

Regular: No torsion + moderate growth of solutions in a neighbourhood of a singularity in \mathbf{P}^n .

EXAMPLE. The system of equations

 $x_1 heta_1(heta_1+ heta_2)-(heta_1+1)(heta_1+ heta_2),$

 $x_2 heta_2(heta_1+ heta_2)-(heta_2+1)(heta_1+ heta_2)$

is not regular holonomic. Any function on the projective line is a solution to it.

EXAMPLE.

The system of differential equations: $x(1-x)\partial_x^2 - xy\partial_x\partial_y + (c - (a + b + 1)x)\partial_x - by\partial_y - ab,$ $y(1-y)\partial_y^2 - xy\partial_x\partial_y + (c' - (a + b' + 1)y)\partial_y - b'x\partial_x - ab'$ is regular holonomic for generic parameters.

The singular locus of this system:

$$S = \{xy(1-x)(1-y)(1-x-y) = 0\}.$$

THEOREM.

A basis in the solution space of a hypergeometric system with commuting operators and generic parameters has the form

$$y_I(x) = \sum_{k \in \mathrm{N}^n} \; arphi(k) (tx)^{k+\gamma_I},$$

where

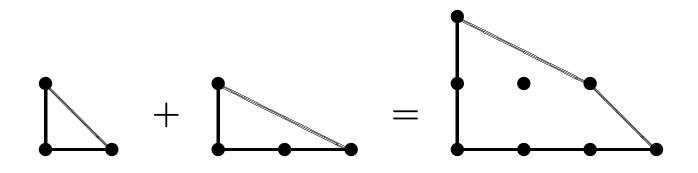
$$arphi(k) = rac{\prod\limits_{i=1}^p \Gamma(\langle A_i, k+\gamma_I
angle+c_i)}{\prod\limits_{
u=1}^n \prod\limits_{j=1}^{d_
u} \Gamma(k_
u+u_{
uj}+1)}.$$

THEOREM. Singularities of hypergeometric functions are algebraic and solid. EXAMPLE.

$$\begin{split} f &= \sum_{k_1,k_2 \ge 0} \frac{\Gamma(k_1 + k_2 + 1)}{\Gamma(k_1 + 1)\Gamma(k_2 + 1)} x_1^{k_1} x_2^{k_2} \\ &= \frac{1}{1 - x_1 - x_2} \\ g &= \sum_{k_1,k_2 \ge 0} \frac{\Gamma(k_1 + 2k_2 + 2)}{\Gamma(k_1 + 1)\Gamma(2k_2 + 2)} x_1^{k_1} x_2^{k_2} \\ &= \frac{1}{(1 - x_1)^2 - x_2} \end{split}$$

$$f \odot g = \sum_{k_1,k_2 \geq 0} rac{\Gamma(k_1+k_2+1)\Gamma(k_1+2k_2+2)}{\Gamma^2(k_1+1)\Gamma(k_2+1)\Gamma(2k_2+2)} x_1^{k_1} x_2^{k_2}$$

$$\begin{array}{r} 4x_1^3 - x_1^2x_2 - 12x_1^2 + 20x_1x_2 - 4x_2^2 \\ + 12x_1 + 8x_2 - 4\end{array}$$



THEOREM.

The Hadamard product of double nonconfluent hypergeometric series corresponds to the Minkowski sum of the Newton polytopes of the polynomials which define their singularities.

REMARKS.

1. Not every solid polynomial determines the singularity of a hypergeometric function.

2. In two variables, any convex integer polygon is the Newton polytope of some polynomial which defines the singularity of a hypergeometric function.

3. Discriminants of univariate polynomials have solid amoebas.