Symplectic geometry of the adjoint quotient I

Ivan Smith (joint with Paul Seidel) partly inspired by ideas of Mike Khovanov

March 20, 2004

The adjoint quotient $\chi: \mathfrak{sl}_m \to \mathbb{C}^{m-1}$ is the map taking a matrix A to the coefficients of the characteristic polynomial $det(\lambda I-A)$. Away from the diagonals of \mathbb{C}^{m-1} , the fibre $\chi^{-1}(t)$ is smooth, and these form a fibre bundle over $\mathbb{C}^{m-1} \setminus \Delta \cong Conf_m^0(\mathbb{C})$. We will be interested in m=2n and the restriction of χ to a certain affine subspace $\mathbb{S}_n \subset \mathfrak{sl}_m$, which explicitly comprises the matrices

$$A = \begin{pmatrix} A_1 & I & & & \\ A_2 & I & & & \\ \vdots & & & & & \\ A_{n-1} & & & I \\ A_n & & \cdots & & 0 \end{pmatrix}$$

where the A_k are 2×2 matrices, and with $tr(A_1) = 0$. The characteristic polynomial is $det(\lambda I - A) = det(\lambda^n - A_1\lambda^{n-1} - \cdots - A_n)$. The smooth fibres $Y_{n,t} = \chi^{-1}(t) \cap \mathbb{S}_n$ are smooth complex affine varieties of dimension 2n. For n = 1, $\mathbb{S}_n = \mathfrak{sl}_2$ and the smooth fibres are affine quadrics $(T^*S^2$ to you); the fibre over 0 is a quadric with a node $(x^2 + yz = 0)$.

Over $Conf_{2n}^0(\mathbb{C})$, $\chi|S_n$ is again a fibre bundle. If we equip S_n with the restriction of the constant Kähler form, we get a symplectic fibre bundle. The pullback of this by the quotient map $\mathbb{C}^{2n-1} \to \mathbb{C}^{2n-1}/S_{2n}$ admits a simultaneous resolution (Grothendieck). Hence the monodromy fits into

$$Br_{2n} = \pi_1(Conf_{2n}^0(\mathbb{C})) \longrightarrow \pi_0(\operatorname{Symp}(Y_{n,t}))$$

$$\downarrow \qquad \qquad \downarrow$$

$$S_{2n} \longrightarrow \pi_0(\operatorname{Diff}(Y_{n,t}))$$

For n=1, the generator of $Br_2\cong \mathbb{Z}$ maps to the Dehn twist on T^*S^2 .

The \mathfrak{sl}_2 case is a model for what happens when we degenerate to a fibre of χ where 2 eigenvalues coincide. Fix a fibre $Y_{n,\tau}$ corresponding to eigenvalues $(\lambda_1 = \lambda_2, \lambda_3, \ldots, \lambda_{2n})$. The singular set is then a submanifold of complex codimension 2, and an open neighbourhood looks like its product with $\{x^2 + yz = 0\}$.

If the double eigenvalue is $\lambda_1=\lambda_2=0$, the singular set consists of matrices with $A_n=0$, hence is isomorphic to the (smooth) fibre $Y_{n-1,\tau'}$ of $\chi|\mathcal{S}_{n-1}$ over $\tau'=(\lambda_3,\ldots,\lambda_{2n})$. Given a Lagrangian submanifold $L_{n-1}\subset Y_{n-1,\tau'}$, we get an induced Lagrangian submanifold L_n in a nearby smooth fibre $Y_{n,t}$ $(t\approx\tau)$. Topologically $L_n\cong L_{n-1}\times S^2$. Iteratively bringing the 2n eigenvalues together in n distinct pairs, we get a Lagrangian submanifold $(S^2)^n\cong L_\mu\subset Y_{n,t}$ for every crossingless matching μ .

An oriented link $K \subset S^3$ can be presented as the closure of a braid $\beta \in Br_n$, $K = K_\beta$.

Conjecture: the invariant defined above is isomorphic to Khovanov's combinatorially defined invariant $Kh^{*,*}(K)$ (with the bigrading collapsed). Basic properties of Khovanov's theory include:

- (1) For a d component unlink, $Kh^{*,*}(K) \cong H^*((S^2)^d)[d]$.
- (2) There is a skein long exact sequence

$$Kh(\mathcal{L}) \rightarrow Kh(\mathcal{L}) \rightarrow Kh(\mathcal{L}) \rightarrow \cdots$$

- (3) The graded Euler characteristic, defined as $\sum_{i,j} (-1)^i q^j$ rank $Kh^{i,j}(K)$, is the Jones polynomial.
- (1) holds in our theory because $L \cong (S^2)^n$ and $HF^*(L,L) \cong H^*(L)$. (2) should hold by a generalization of the long exact sequence in Floer cohomology. (3) relies essentially on the bigrading, which we do not yet know how to recover geometrically.

Taking a configuration of points $t \in Conf_{2n}^0(\mathbb{C})$ which lie on the real line, we get two crossingless matchings μ_{\pm} , hence two Lagrangian submanifolds of $Y_{n,t}$ which in fact are equal, $L_{\mu_{+}} = L_{\mu_{-}}$. For $\beta \times id \in Br_{n} \times Br_{n} \subset Br_{2n}$ we have a monodromy map on $Y_{n,t}$, also denoted by $\beta \times id$.

Theorem: $HF^*(L_{\mu_{\pm}}, (\beta \times id)L_{\mu_{\pm}})$ is an invariant of the oriented link $K = K_{\beta}$.

The theorem is proved by verifying invariance under the two Markov moves: the first one is fairly obvious from the general structure of the definition, and the second relies on the local geometry of the $\chi|S_n$.

 $Y_{n,t}$, $t=(\lambda_1,\ldots,\lambda_{2n})$, is also a moduli space of solutions to Nahm's equations. These can be viewed as equations for instantons on \mathbb{R}^4 with symmetry, which shows that $Y_{n,t}$ is naturally hyperkähler. More precisely, we want

$$T: (0; +\infty) \to \mathfrak{sl}_{2n} \otimes \mathbb{R}^3,$$
$$dT_i/dr + [T_j, T_k] = 0$$

with the following boundary conditions. As $r \to +\infty$, $T_1 \to 0$ and $T_2 + iT_3 \to (\text{matrix with eigenvalues } \lambda_k)$. As $r \to 0$, the T_i have simple poles, whose residues define a homomorphism $\rho: \mathfrak{sl}_2 \to \mathfrak{sl}_{2n}$ mapping $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ to the nilpotent $A_1 = \cdots = A_n = 0$ in \mathbb{S}_n .

Because the centralizer of ρ in \mathfrak{sl}_{2n} is \mathfrak{sl}_2 , we have a (fixed point free) SU(2)-action on the space of solutions. On $Y_{n,t}$, this is given by conjugation of each A_k . There is an SU(2)-equivariant version of the link invariants.

There is also an involution, which is not part of a continuous symmetry group and is more special to our boundary conditions. The requirement that $T_1 \to 0$ breaks the SO(3)-symmetry of Nahm's equations, writing $\mathbb{R}^3 = \mathbb{C} \oplus \mathbb{R}$. It follows that there is a holomorphic involution ι on the space of solutions, which is $(T_1, T_2, T_3) \mapsto (T_1^t, T_3^t, T_2^t)$ followed by a conjugation. In our original description of $Y_{n,t}$, this is simply $A_k \to A_k^t$, $k = 1, \ldots, n$ (this preserves eigenvalues).

Notation: Σ is the double branched cover of $\mathbb{C}P^1$ with branch points $(\lambda_1,\ldots,\lambda_{2n})$. It has genus g=n-1. We denote by $\pi:\Sigma\to\mathbb{C}P^1$ the hyperelliptic quotient, and by $\pm\infty\in\Sigma$ the two preimages of $\infty\in\mathbb{C}P^1$.

Proposition: The fixed point set $(Y_{n,t})^{\iota}$ is canonically isomorphic to $Sym^n(\Sigma) \setminus (\Delta_1 \cup \Delta_2)$, where Δ_1 consists of configurations including a fibre of π , and Δ_2 are configurations containing $+\infty$ or $-\infty$.

Equivalently, $(Y_{n,t})^{\iota}$ is a (trivial) \mathbb{C}^* -bundle over $Pic^{g-1}(\Sigma) \setminus \Theta$. This description of hyperelliptic Jacobians goes back to Mumford.

The Lagrangian submanifolds L_{μ} associated to crossingless matchings are ι -invariant, with fixed point sets $(S^1)^n \subset (S^2)^n$. There are two more oriented link invariants, defined by taking Floer cohomology in the fixed point set, or $\mathbb{Z}/2$ -equivariant Floer cohomology in $Y_{n,t}$.

To investigate the relation between all these variant theories (and others in the literature), there are two basic tools, one well-understood and the other currently being developed.

Adding a divisor: Let X be Kähler, $D \subset X$ a divisor with nonnegative normal bundle. Given two Lagrangians L_0, L_1 in $X \setminus D$ (and if suitable technical conditions are satisfied), there are groups $HF^*(L_0, L_1; X \setminus D)$ and $HF^*(L_0, L_1; X)$.

The chain groups coincide and the differential can be written as

$$d_X = d_{X \setminus D} + qd^{(1)} + q^2d^{(2)} + \cdots$$

where $d^{(k)}$ counts discs having intersection number k with D. Consequently, we have a spectral sequence $HF^*(L_0,L_1;X\backslash D)\Rightarrow HF^*(L_0,L_1;X)$, in particular the rank of the former group is \geq that of the latter.

Localization: Let G act on X preserving two Lagrangian submanifolds L_0, L_1 . Under suitable technical assumptions, we have equivariant Floer cohomology $HF_G^*(L_0, L_1)$ and a spectral sequence converging to $HF_G^*(L_0, L_1)$, whose E_1 term is $C^*(BG) \otimes HF^*(L_0, L_1)$, and E_2 term $H^*(BG; HF^*(L_0, L_1))$. In particular, if $G = \mathbb{Z}/2$ and we are working with $\mathbb{Z}/2$ -coefficients, then $rank_{H_G^*(pt)}HF_{\mathbb{Z}/2}^*(L_0, L_1) \leq rank_{\mathbb{Z}/2}HF^*(L_0, L_1)$.

The localization theorem for ordinary cohomology (of finite-dimensional G-manifolds M) says that the map $H_G^*(M) \to H_G^*(M^G) = H_G^*(pt) \otimes H^*(M^G)$ becomes an isomorphism after tensoring with the quotient field of $H_G^*(pt)$. A consequence is the (P.) Smith theorem, which for $G = \mathbb{Z}/2$ says $rank_{\mathbb{Z}/2}H^*(M^G) \leq rank_{\mathbb{Z}/2}H^*(M)$.

One can hope to mimic this in Floer cohomology, at least in the case where the normal bundle to the fixed locus has vanishing c_1 , which holds in our case. If this works out, we will get the following crazy diagram of relations:

= is isomorphism, \leadsto is localization, \to denotes a spectral sequence. The spectral sequence going to Pic^{g-1} is analogous to the Lee-Rasmussen spectral sequence in Khovanov cohomology, and indeed a similar picture appears in Ozsvath-Szabo's work.

One can speculate that the spectral sequence associated to the SU(2)-equivariant theory may also give nontrivial invariants. Finally, an important question is whether one can use this additional information to equip the symplectic theory with a bigrading.