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The adjoint quotient x : stm — C™~1 is the
map taking a matrix A to the coefficients of
the characteristic polynomial det(AI—A). Away
from the diagonals of C™~1, the fibre x~1(¢)
IS smooth, and these form a fibre bundle over
Cm=1\ A = Confl(C). We will be interested
in m = 2n and the restriction of xy to a cer-
tain affine subspace 8§, C slyn, which explicitly
comprises the matrices
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where the A, are 2 x 2 matrices, and with
tr(A1) = 0. The characteristic polynomial is
det(N — A) = det(\"— A1 ...~ A,). The
smooth fibres Y, ; = x~1(t) N 8, are smooth
complex affine varieties of dimension 2n. For
n = 1, 5, = slo and the smooth fibres are
affine quadrics (T*S? to you); the fibre over 0
is a quadric with a node (22 4 yz = 0).




Over ConfS (C), x|S» is again a fibre bundle.
If we equip 8, with the restriction of the con-
stant Kahler form, we get a symplectic fibre
bundle. The pullback of this by the quotient
map C27—1 — (C?n—1/5,, admits a simulta-
neous resolution (Grothendieck). Hence the
monodromy fits into

Bro, = 71 (Confs (C)) ——  mo(Symp(Ynt))
Son > mo(DIiff(Yy4))

For n = 1, the generator of Bro, = 7Z maps to
the Dehn twist on T*S2.

The sl case is a model for what happens when
we degenerate to a fibre of x where 2 eigenval-
ues coincide. Fix a fibre Y, r corresponding to
eigenvalues (A1 = Ao, A3,...,A2,). The singu-
lar set is then a submanifold of complex codi-
mension 2, and an open neighbourhood looks
like its product with {z? + yz = 0}.



If the double eigenvalue is Ay = A» = 0, the
singular set consists of matrices with A, =
0, hence is isomorphic to the (smooth) fibre
Y, 1. 0f x|8,_1 over 7' = (A3,...,A2,). Given
a Lagrangian submanifold L,,_; C Y,,_1 -, we
get an induced Lagrangian submanifold L, in a
nearby smooth fibre Y;, ; (t = 7). Topologically
L, = L, 1 x S2. TIteratively bringing the 2n
eigenvalues together in n distinct pairs, we get
a Lagrangian submanifold (S?)" £ L, C Y4
for every crossingless matching pu.
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An oriented link K ¢ S3 can be presented as
the closure of a braid g € Brn, K = Kg.






Conjecture: the invariant defined above is iso-
morphic to Khovanov's combinatorially defined
invariant Kh**(K) (with the bigrading collapsed).
Basic properties of Khovanov's theory include:

(1) For a d component unlink, Kh**(K) =
H*(($%))[d].

(2) There is a skein long exact sequence
k[ Z)—kh() ()= k(X)) =

(3) The graded Euler characteristic, defined as
>i;(=1)'¢’rank Kh*J(K), is the Jones polyno-
mial.

(1) holds in our theory because L £ (S?)" and
HF*(L,L) = H*(L). (2) should hold by a gen-
eralization of the long exact sequence in Floer
cohomology. (3) relies essentially on the bi-
grading, which we do not yet know how to
recover geometrically.



Taking a configuration of points t € ConfS_(C)
which lie on the real line, we get twoO Cross-
ingless matchings p+, hence two Lagrangian
submanifolds of Y, : which in fact are equal,
Ly, =Ly . For g xid € Brn X Brn C Bro, we
have a monodromy map on Y, ¢, also denoted
by B X ud.

Theorem: HF*(L,,,(B8 xid)Ly,) is an in-
variant of the oriented link K = Kﬁ.

The theorem is proved by verifying invariance
under the two Markov moves: the first one is
fairly obvious from the general structure of the
definition, and the second relies on the local
geometry of the x|Sn.



Yot t = (A1,...,A2,), is also a moduli space of
solutions to Nahm’s equations. These can be
viewed as equations for instantons on R* with
symmetry, which shows that Y, ; is naturally
hyperkahler. More precisely, we want

T : (0; +00) — sly, @ R3,
dTi/d’l" + [Tj, Tk] =0

with the following boundary conditions. As
r — o0, 13 — 0 and T5 + ¢T3 —(matrix with
eigenvalues \p). As r — 0O, the T; have simple
poles, whose residues define a homomorphism
p . slo — sly, mMapping (8 (1)> to the nilpotent
A]_ — ZAn =0 in 8”.

Because the centralizer of p in sly, is sly, we
have a (fixed point free) SU(2)-action on the
space of solutions. OnN Y, this is given by
conjugation of each A,. There is an SU(2)-
equivariant version of the link invariants.



There is also an involution, which is not part of
a continuous symmetry group and is more spe-
cial to our boundary conditions. The require-
ment that Ty — O breaks the SO(3)-symmetry
of Nahm's equations, writing R3 = C®R. It fol-
lows that there is a holomorphic involution ¢ on
the space of solutions, which is (T1,715,13) —
(1%, T%, T%) followed by a conjugation. In our
original description of Y}, ;, this is simply Ay —
Al k=1,...,n (this preserves eigenvalues).

Notation: X is the double branched cover of
CPl with branch points (A1,...,\2,). It has
genus ¢ =n — 1. We denote by 7 : ¥ — CP1
the hyperelliptic quotient, and by +oo € > the
two preimages of co € CP1L.

Proposition: The fixed point set (Yn )" is
canonically isomorphic to Sym™(Z)\(A1UA5),
where A1 consists of configurations including
a fibre of w, and A, are configurations con-
taining +o0o0 or —oo.



Equivalently, (Y, )" is a (trivial) C*-bundle over
Pic9—1()\©. This description of hyperelliptic
Jacobians goes back to Mumford.

The Lagrangian submanifolds L, associated
to crossingless matchings are (-invariant, with
fixed point sets (S1)" c (82)". There are two
more oriented link invariants, defined by tak-
ing Floer cohomology in the fixed point set, or
7./2-equivariant Floer cohomology in Yy ¢.

To investigate the relation between all these
variant theories (and others in the literature),
there are two basic tools, one well-understood
and the other currently being developed.

Adding a divisor: Let X be Kahler, D C X a
divisor with nonnegative normal bundle. Given
two Lagrangians Lg, L1 in X\ D (and if suitable
technical conditions are satisfied), there are
groups HF*(Lg,L1; X\ D) and HF*(Lg, L1; X).



The chain groups coincide and the differential
can be written as

dy = dx\p + gdD) + ¢24(2) 4 ...

where d(*¥) counts discs having intersection num-
ber k with D. Consequently, we have a spectral
sequence HF*(Lg, L1; X\D) = HF*(Lg, L1, X),
in particular the rank of the former group is >
that of the latter.

Localization: Let G act on X preserving two
Lagrangian submanifolds Lg,L71. Under suit-
able technical assumptions, we have equivari-
ant Floer cohomology HF}(Lg, L) and a spec-
tral sequence converging to HF5(Lg, L1), whose
E1 termis C*(BG)QHF*(Lg, L), and E, term
H*(BG; HF*(Lg, L1)). In particular, it G = 7Z/2
and we are working with Z/2-coefficients, then

Ta’nkHé(pt)HFi/Q (Lg,Lq1) < ranls:Z/QH'F*(Lo, Lq).



The localization theorem for ordinary cohomol-
ogy (of finite-dimensional G-manifolds M ) says
that the map H} (M) — HA(M®) = HE(pt) ®
H*(M&) becomes an isomorphism after tensor-
ing with the quotient field of H5(pt). A con-
sequence is the (P.) Smith theorem, which for
G = Z/2 says rankZ/QH*(MG) < rankz/zH*(iM).

One can hope to mimic this in Floer cohomol-
ogy, at least in the case where the normal bun-
dle to the fixed locus has vanishing c1, which
holds in our case. If this works out, we will get
the following crazy diagram of relations:



“ N
Kh*,*

|

HFEF* on Yn,t HFng(Q) on Yn,t

[ 7
trivial since

HF%/Q on Yn,t Y,';gg(Q) _ @
7
{
HE™ on Yy HF (Mg#St x §?)
QH*(S1) H@H*(sl)
HF* on Picd—1\ @w*»ﬁf?*(MK)

HE* on Picd—1 /

counts components

= is isomorphism, ~- is localization, — de-
notes a spectral sequence. The spectral se-
quence going to Pic9~1 is analogous to the
Lee-Rasmussen spectral sequence in Khovanov
cohomology, and indeed a similar picture ap-
pears in Ozsvath-Szabo's work.



One can speculate that the spectral sequence
associated to the SU(2)-equivariant theory may
also give nontrivial invariants. Finally, an im-
portant question is whether one can use this
additional information to equip the symplectic
theory with a bigrading.





