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1. The basic idea
Let A be an abelian category.
We will define configurations
(σ, ι, π) in A, collections of
objects and morphisms in A
attached to a finite poset
(I,�), satisfying axioms.
They are a new tool for
describing how an object in
A breaks up into subobjects.
They are useful for studying
stability conditions on A.
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Let Z : K(A) → C be a slope
function with phase θ. Under
conditions on A, Z we
can define moduli spaces
Mss,Mst(I,�, κ, θ) of (I,�)-
configurations (σ, ι, π) with
σ({i}) θ-(semi)stable, i ∈ I.
Let Iss, Ist(I,�, κ, θ) be their
Euler characteristics. They
are a system of invariants of
A, Z. We prove identities for
them, and transformation
laws to change from Z to Z̃.
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2. Abelian categories
A category A has objects X, Y

in A or Obj(A), morphisms
f in Mor(A), or f : X → Y .
Write Hom(X,Y )={f :X→Y }.
A is an abelian category if
• Hom(X, Y ) is an abelian
group for X, Y ∈ A, and
composition is biadditive.
• there is a zero object 0 ∈ A.
• direct sums X ⊕ Y exist.
• kernels and cokernels exist.
Exact sequences make sense.
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For K a field, A is K-linear if
Hom(X,Y )is a K-vector space,
and composition is bilinear.
Examples
• category of abelian groups
• category of K-vector spaces
• coh(P), the category of
coherent sheaves on a
projective variety P over K.
• mod-A, the category of
representations of a finite-
dimensional algebra A over K.
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Subobjects
Let X ∈ A and i : S → X,
i′ : S′ → X be injective. We
call i, i′ equivalent if there is
an isomorphism h : S → S′
with i = i′ ◦ h. A subobject
S ⊂ X is an equivalence class
of i : S → X. Examples:
• subgroups of abelian groups.
• subspaces of a vector space.
• vector subbundles
(subsheaves) of a vector
bundle (coherent sheaf).
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Call A noetherian (artinian) if
ascending (descending) chains
of subobjects must stabilize.
Call A finite length if it is
noetherian and artinian. Call
0 �= X ∈ A simple if the only
subobjects S ⊂ X are 0, X.

Jordan-Hölder Theorem.
For A of finite length and X

in A, there exist subobjects
0 = A0 ⊂ A1 ⊂ · · · ⊂ An = X

with Sk=Ak/Ak−1 simple, and
n, Sk unique up to order, iso.
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Then we call S1, . . . , Sn

the simple factors of X, and
0=A0⊂A1⊂· · ·⊂An=X

a composition series for X.
Let S1, . . . , Sn be pairwise non-
isomorphic. Write {S1, . . . , Sn}
= {Si : i ∈ I}, for I a finite
indexing set, |I| = n. Then
for each composition series
0 = B0 ⊂ B1 ⊂ · · · ⊂ Bn = X

with Tk=Bk/Bk−1, there is a
unique bijection φ :I→{1,. . ., n}
with Si ∼=Tφ(i), all i∈I.
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Define a partial order � on I

by i�j if φ(i) � φ(j) for all
φ from composition series as
above.
Call J ⊆ I an s-set if i ∈ I,
j ∈ J and i�j ⇒ i ∈ J.
Call J ⊆ I an f-set if i ∈ I,
h, j ∈ J and h�i�j ⇒ i ∈ J.
The finite poset (I,�) encodes
all information on subobjects
S ⊂ X, and their inclusions
S ⊂ T ⊂ X, when X has non-
isomorphic simple factors.
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There are unique
1-1 correspondences:

• subobjects S ⊂ X ↔ s-sets
J ⊆ I, where S has simple
factors Sj, j ∈ J. If S, T ↔
J, K then S⊂T ⇔ J ⊆K.
• factors F = T/S for S ⊂
T ⊂ X ↔ f-sets J ⊆ I, where
F has simple factors Sj, j∈J.
• composition series
0 = B0 ⊂ B1 ⊂ · · · ⊂ Bn = X

↔ bijections φ : I → {1,. . ., n}
with i�j ⇒ φ(i) � φ(j).
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Definition. Let (I,�) be a finite poset. Write
F(I,�) for the set of f-sets of I. Define G(I,�) to
be the subset of (J, K) ∈ F (I,�) × F (I,�) such that
J ⊆ K, and if j ∈ J and k ∈ K with k�j, then k ∈ J.
Define H(I,�) = {(K, K \ J) : (J, K) ∈ G(I,�)}.
Define an (I,�)-configuration (σ, ι, π) in an abelian

category A to be maps σ : F(I,�) → Obj(A),
ι : G(I,�)→Mor(A), and π : H(I,�)→Mor(A), where
ι(J, K), π(J, K) are morphisms σ(J)→σ(K).

These should satisfy the conditions:

(A) Let (J, K) ∈ G(I,�) and set L = K \ J.
Then the following is exact in A:

0 �� σ(J)
ι(J,K)

�� σ(K)
π(K,L)

�� σ(L) �� 0.

(B) If (J, K) ∈ G(I,�) and (K, L) ∈ G(I,�)

then ι(J, L) = ι(K, L) ◦ ι(J, K).

(C) If (J, K) ∈ H(I,�) and (K, L) ∈ H(I,�)

then π(J, L) = π(K, L) ◦ π(J, K).

(D) If (J, K) ∈ G(I,�) and (K, L) ∈ H(I,�) then

π(K, L) ◦ ι(J, K) = ι(J ∩ L, L) ◦ π(J, J ∩ L).
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This encodes the properties of the

set of subobjects S ⊂ X when X

has nonisomorphic simple factors.

Theorem 1. Let A have finite

length, X ∈ A have nonisomorphic

simple factors {Si : i ∈ I}, and �
be as before. Then there exists

an (I,�)-configuration (σ, ι, π) with

σ(I) = X, unique up to isomor-

phism, such that if a subobject S ⊂
X has simple factors {Sj : j ∈ J},
then S is represented by ι(J, I) :

σ(J) → X.
12



I derived the idea of configuration

for A of finite length and X with

nonisomorphic simple factors. But

it is useful much more generally, as

a tool for describing how objects

decompose into subobjects.

For example, a short exact sequence

0 → X → Y → Z → 0 is the same as

a ({1,2}, �)-configuration (σ, ι, π)

with σ({1}) = X, σ({1,2}) = Y

and σ({2}) = Z. Essentially this

says that Y has a subobject X.
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Quotient configurations

Let (I,�), (K, �) be finite posets, and φ :

I→K surjective with i�j implies φ(i)�φ(j).

Let (σ, ι, π) be an (I,�)-configuration.

Define a (K, �)-configuration (σ̃, ι̃, π̃) to

be (σ ◦ φ∗, ι ◦ φ∗, π ◦ φ∗), where φ∗ : F(K,�),

G(K,�),H(K,�) → F (I,�),G(I,�),H(I,�) pulls

back subsets of K to subsets of I.

We call (σ̃, ι̃, π̃) the quotient (K, �)-con-

figuration of (σ, ι, π). We call (σ, ι, π) a

refinement of (σ̃, ι̃, π̃). If I =K and φ=idI

we call (σ, ι, π) an improvement of (σ̃, ι̃, π̃).

Improvements split short exact sequences.

We call (σ̃, ι̃, π̃) best if it admits no strict

improvements.
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Slope stability

Let K(A) be the Grothendieck group

of A. A slope function on A is a

homomorphism Z : K(A) → C with

Z([X]) ∈ {
reiπθ : r > 0, θ ∈ (0,1]

}

for all 0 �∼= X ∈ A.

Define the phase θ([X]) ∈ (0,1] by

Z([X])=reiπθ([X]). Define X to be

(i) θ-stable if θ([S]) < θ([X]) for all

S ⊂ X with S �= 0, X.

(ii) θ-semistable if θ([S]) � θ([X])

for all 0 �= S ⊂ X.

(iii) θ-unstable otherwise.
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A research programme

Let K be an algebraically closed field

of characteristic zero. Let A be some

interesting abelian category over K. Let

(I,�) be a finite poset and κ : I → K(A)

a map. Define a moduli space

Mall(I,�, κ) to be the set of isomorphism

classes of (I,�)-configurations (σ, ι, π)

with [σ({i})] = κ(i) in K(A) for all i ∈ I.

Let Z be a slope function with phase θ.

Define subspaces Mst,Mss(I,�, κ, θ) of

[(σ, ι, π)] in Mall(I,�, κ) with σ({i})
θ-(semi)stable for all i ∈ I, and Mb

all,

Mb
st,Mb

ss(. . .) with (σ, ι, π) best.
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We call (I,�, κ) A-data. For

the examples I am interested in,

Mall(I,�, κ) is an Artin stack,

and Mst,Mss,Mb
all,Mb

st,Mb
ss(. . .)

are constructible subsets (finite

unions of substacks of finite

type over K), with well-defined

Euler characteristics. Quotient

configurations induce morphisms

Mall(I,�, κ) → Mall(K, �, µ).

Define Ist, Iss, I
b
st, I

b
ss(I,�, κ, θ)

to be the Euler characteristics

of Mst,Mss,Mb
st,Mb

ss(I,�, κ, θ).
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Universal identities between the invariants

Let �,� be partial orders on I. We say that �
dominates � if i�j implies i � j. Here is how to

transform between best and non-best invariants.

Theorem 2. Let A satisfy some assumptions, and

Z be a permissible slope function on A with phase

θ. Then for all A-data (I, �, κ) we have
∑

p.o.s � on I:
� dominates �

Ib
st(I,�, κ, θ) = Ist(I, �, κ, θ),

∑

p.o.s � on I:
� dominates �

Ib
ss(I,�, κ, θ) = Iss(I, �, κ, θ),

∑

p.o.s � on I:
� dominates �

n(I,�, �)Ist(I,�, κ, θ) = Ib
st(I, �, κ, θ),

∑

p.o.s � on I:
� dominates �

n(I,�, �)Iss(I,�, κ, θ) = Ib
ss(I, �, κ, θ).

Here n(I,�, �) are explicitly defined constants.

The proof of these uses χ(Kl) = 1.
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Theorem 3. Let A satisfy some assumptions, and

Z be a permissible slope function on A with phase

θ. Then for all A-data (K, �, µ) we have

∑

iso.
classes

of finite
sets I

1

|I|! ·
∑

�, κ, φ: (I,�, κ) is A-data,
φ : I → K is surjective,
i�j implies φ(i) � φ(j),

κ(φ−1(k)) = µ(k) for k ∈ K,
θ ◦ µ ◦ φ ≡ θ ◦ κ : I → (0,1]

Ib
st(I,�, κ, θ) =

Iss(K, �, µ, θ),

∑

iso.
classes

of finite
sets I

1

|I|! ·
∑

�, κ, φ: (I,�, κ) is A-data,
(I,�, K, φ) is allowable,

�= P(I,�, K, φ),
κ(φ−1(k)) = µ(k) for k ∈ K,
θ ◦ µ ◦ φ ≡ θ ◦ κ : I → (0,1]

Ib
st(I,�, κ, θ) =

Ib
ss(K, �, µ, θ),

∑

iso.
classes

of finite
sets I

1

|I|! ·
∑

�, κ, φ: (I,�, κ) is A-data,
(I,�, K, φ) is allowable,

�= P(I,�, K, φ),
κ(φ−1(k))=µ(k) for k∈K,
θ ◦ µ ◦ φ ≡ θ ◦ κ : I → (0,1]

N(I,�, K, φ)·
Ib
ss(I,�, κ, θ) =

Ib
st(K, �, µ,θ).

Here N(I,�, K, φ) are explicitly defined constants.

Theorems 2 and 3 mean that each of the four fam-

ilies Ist, Iss, I
b
st, I

b
ss(. . .) determines the other three.
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Here are the transformation laws between the in-

variants for two different slope functions.

Theorem 4. Let A satisfy some assumptions,

and Z, Z̃ be permissible slope functions on A with

phases θ, θ̃. Then for all A-data (K, �, µ) we have

∑

iso.
classes

of finite
sets I

1

|I|! ·
∑

�, κ, φ: (I,�, κ) is A-data,
(I,�, K, φ) is allowable,

�= P(I,�, K, φ),
κ(φ−1(k)) = µ(k) for k ∈ K

Tb
st(I,�, κ, K, φ, θ, θ̃)·

Ib
st(I,�, κ, θ) =

Ib
st(K, �, µ, θ̃),

∑

iso.
classes

of finite
sets I

1

|I|! ·
∑

�, κ, φ: (I,�, κ) is A-data,
(I,�, K, φ) is allowable,

�= P(I,�, K, φ),
κ(φ−1(k)) = µ(k) for k ∈ K

Tb
ss(I,�, κ, K, φ, θ, θ̃)·

Ib
ss(I,�, κ, θ) =

Ib
ss(K, �, µ, θ̃).

There are only finitely many terms in each sum

with Tb
st, T

b
ss(. . .) and Ib

st, I
b
ss(. . .) both nonzero.

Here Tb
st, T

b
ss(. . .) are explicitly defined constants.

So, if we know the invariants for one slope function

Z, we can compute them for all slope functions Z̃.
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Conclusions

Moduli spaces of configurations are

the right tools to use to understand

how moduli spaces of θ-(semi)stable

sheaves, etc., change as we vary

the stability condition Z, θ.

For instance, we can compute how

the Euler characteristics of mod-

uli spaces of θ-(semi)stable sheaves

change using Theorem 4.
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There is also an extension of all this to

triangulated categories, using Bridgeland’s

notion of stability. This extension should

be important in Homological Mirror Sym-

metry of Calabi–Yau m-folds, and Π-stability

and branes in String Theory.

Applied to the derived category of coher-

ent sheaves, the invariants Ist, . . . are an

extension of the Gromov–Witten invari-

ants, I think.

Applied to the derived category of the Fukaya

category, the invariants count configura-

tions of special Lagrangian m-folds. This

is how I started working on all this.
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