On some constrained polynomial optimization problems in nonlinear computational geometry

Thorsten Theobald

MSRI / J. W. Goethe-Universität, Frankfurt

(joint work with René Brandenberg)

Radii of polytopes

 $\emph{n}: \emph{n}$ -dimensional Euclidean space $\begin{array}{c} n \cdot n \ j, n \end{array}$ $t_{j,n} :=$ the set of all j -dimensional subspaces in $\mathbb E$
or a polytope $P \subset \mathbb F^n$ and $L \in \mathcal L$

For a polytope $P\subset \mathbb{E}^n$ and $L\in \mathcal{L}_{j,n}$: $\frac{n}{\rho}$ and $L \in \mathcal{L}$
projection of $\sigma_L(P):$ orthogonal projection of P on L
and σ in a polytone P

Outer -radius of ^a polytope : $(D) \leftarrow m$ $L \in \mathcal{L}_{i,n}$ \int -dim. circumradius of $\pi_I(P)$

2-radius in \mathbb{E}^3 :

Constrained polynomial optimization problems

Let
$$
P = \text{conv } \{v^{(1)}, \dots, v^{(m)}\}
$$

and $L^{\perp} = \text{lin } \{s^{(1)}, \dots, s^{(n-j)}\}$ with pairwise orthogonal $s^{(1)}, \dots, s^{(n-j)} \in \mathbb{S}^{n-1}$, $p \in L$.

$$
= \lim \{s^{(1)}, \dots, s^{(n-j)}\} \text{ with pairwise orthogonal}
$$
\n
$$
, s^{(n-j)} \in \mathbb{S}^{n-1}, \quad p \in L.
$$
\n
$$
\min \rho^2
$$
\n
$$
s.t. \quad (p - \pi_L(v^{(i)}))^2 \leq \rho^2, \qquad i = 1, \dots, m
$$
\n
$$
p \cdot s^{(k)} = 0, \qquad k = 1, \dots, n - j
$$
\n
$$
s^{(1)}, \dots, s^{(n-j)} \in \mathbb{S}^{n-1}, \text{ pairwise orthogonal}
$$
\n
$$
y \text{ for the 2-radius of simplices in } \mathbb{E}^3:
$$

Already for the 2-radius of simplices in \mathbb{E}^3 :

polynomial systems of degree $2 \cdot 18$ (Brandenberg, Th., AAECC 2004)

Regular simplex

 n : regular simplex with edge length $\sqrt{2}$. Let $1 \leq j \leq n-1$.

$$
R_1(T^n) = \begin{cases} \sqrt{\frac{1}{n+1}} & \text{if } n \text{ odd} \\ \sqrt{\frac{n+1}{n(n+2)}} & \text{if } n \text{ even} \end{cases}
$$

$$
R_j(T^n) = \sqrt{\frac{j}{n+1}} \quad \text{for } 2 \le j \le n-2
$$

$$
R_{n-1}(T^n) = \sqrt{\frac{n-1}{n+1}} \quad \text{if } n \text{ odd}
$$

sical: $n > 1$: Pukhov '80. Weißbach '83)

 $+1$
hov $(n=1:$ classical; $\;$ $\;n>1:$ Pukhov '80, Weißbach '83)

And the even case

In another paper, Weißbach reduced the determination of the outer $(n-$ 1)-radius for even n to

$$
\min \sum_{i=1}^{n+1} u_i^4
$$

s.t.
$$
\sum_{i=1}^{n+1} u_i^2 = 1, \sum_{i=1}^{n+1} u_i = 0
$$

Multipliers λ_1, λ_2 yields the equation

Using Lagrange multipliers
$$
\lambda_1, \lambda_2
$$
 yields the equations
\n
$$
4u_i^3 + 2\lambda_1 u_i + \lambda_2 = 0, \qquad 1 \le i \le n+1
$$
\n
$$
\sum_{i=1}^{n+1} u_i^2 = 1, \quad \sum_{i=1}^{n+1} u_i = 0
$$

A SINGULAR **computation**

Errneously, it is argued that symmetry arguments imply that $\kappa_2=0$ in any solution (gives 50 solutions for $n=4$). SINGULAR computation:

```
ring R = 0, (ul, u2, u3, u4, u5, l a1, la2), dp;
ideal I = 4*u1ˆ3 + 2*la1*u1 + la2,
           4*u2ˆ3 + 2*la1*u2 + la2,
           4*u3ˆ3 + 2*la1*u3 + la2,
           4*u4ˆ3 + 2*la1*u4 + la2,
           4*u5ˆ3 + 2*la1*u5 + la2,
          u1ˆ2 + u2ˆ2 + u3ˆ2 + u4ˆ2 + u5ˆ2 - 1,
          u1 + u2 + u3 + u4 + u5;
degree(std(I));Output:
codimension = 7
dimension = 0
degree = 80
```
30 additional solutions with $\lambda_2\neq 0,$ which are also real.

Enclosing vs. circumscribing

In general, not all vertices of the polytope are projected onto the enclosing sphere in ^a minimal projection (not even for simplices) \rightsquigarrow < vs. =

Theorem. Let $1 \leq j \leq n < m$ and $P = \text{conv}\{v^{(1)}, \ldots, v^{(m)}\} \subset \mathbb{E}^n$ be an *n*-polytope. Then one of the following is true. an n -polytope. Then one of the following is true.

- a) In every R_j -minimal projection of P there exist $n+1$ affinely independent vertices of P which are projected onto the minimal enclosing j -sphere.
- b) $\ R_j(P)=R_{j-1}(P\cap H)$ for $j\geq 2$ and some hyperplane $= \text{aff}\{v^{(i)} : i \in I\}$ with $I \subset \{1, \ldots, n\}$

 $,m$ }.
case If $j=1$ or if P is a regular simplex then case a) holds.

Proof idea (for the regular simplex and $j=n-$ **)**

Show: Every minimal enclosing cylinder is circumscribing. : hyperplane underlying one of the facets

The optimization problem

Contract Contract $\mathcal{L} = \mathcal{L}$ $i = 1$ in \mathbb{E}^{n+1}).
 $\sum_{n=1}^{n+1} i_n = 0$ $s:=\mathsf{projection}\ \mathsf{direction}.$
 $\begin{aligned} n+1\end{aligned}$

$$
n = \text{conv}\{e^{(1)}, \dots, e^{(n+1)}\} \text{ (C hyperplane }\sum_{i=1} x_i = 1 \text{ in } \mathbb{E}^{n+1}
$$
\n
$$
:= \text{projection direction.}
$$
\n
$$
\min \sum_{i=1}^{n+1} s_i^4, \quad \text{s.t. } \sum_{i=1}^{n+1} s_i^3 = 0, \sum_{i=1}^{n+1} s_i^2 = 1, \sum_{i=1}^{n+1} s_i = 0
$$
\n
$$
\text{argrange multipliers yield } |\{s_1, \dots, s_{n+1}\}| \le 3.
$$

Lagrange multipliers yield $|\left\{ s_1,\ldots,s_{n+1}\right\}|\leq 3$.

$$
\min k_1 s_1^4 + k_2 s_2^4 + k_3 s_3^4
$$

s.t.
$$
k_1 s_1^3 + k_2 s_2^3 + k_3 s_3^3 = 0
$$

$$
k_1 s_1^2 + k_2 s_2^2 + k_3 s_3^2 = 1
$$

$$
k_1 s_1 + k_2 s_2 + k_3 s_3 = 0
$$

$$
k_1 + k_2 + k_3 = n + 1
$$

$$
s_1, s_2, s_3 \in \mathbb{R}, \quad k_1, k_2, k_3 \in \mathbb{N}_0
$$

rank irrelevant for *n* odd, but crucial f

Integer constraints irrelevant for n odd, but crucial for n even.

Solving the system

 k_1, k_2, k_3, s_2 can be rationally expressed in s_1, s_3 . Properties (such c_1,k_2,k_3,s_2 can be rationally expressed in s_1,s_3 . Properties (such $s~k_1\leq (n+1)/2$) are regions bounded by plane algebraic curves as $k_1\leq (n+1)/2)$ are regions bounded by plane algebraic curves.

Theorem.

$$
R_{n-1}(T^n) = \begin{cases} \sqrt{\frac{n-1}{n+1}} & \text{if } n \text{ is odd,} \\ \frac{2n-1}{2\sqrt{n(n+1)}} & \text{if } n \text{ is even.} \end{cases} \text{ (edge length } \sqrt{2} \text{)}
$$

Connections to the Real Nullstellensatz

Stengle ('74): A polynomial system in m variables

$$
f(x) \geq 0, g_1(x) = 0, \dots, g_r(x) = 0
$$

olution $x \in \mathbb{R}^m$, or there exists a polyno

either has a solution $x\in \mathbb{R}^m$, or there exists a polynomial identity $\sum_{a\in G_i}^r \sum_{j=1}^u f(x,y) \leq \sum_{a\in G_i}^u f(x,y) \leq \sum_{a\in G_i}^u f(x,y) \leq \sum_{a\in G_i}^u f(x,y)$

$$
\sum_{i=1}^{r} a_i g_i + (\sum_{j=1}^{u} b_j^2) f + \sum_{k=1}^{v} c_k^2 + 1 = 0
$$

and $a_i, b_j, c_k \in \mathbb{R}[x_1, \dots, x_m].$

with $u,v\in\mathbb{N}_0$ and $a_i,b_j,c_k\in\mathbb{R}[x_1,\ldots,x_m]$ For n odd: polynomial identity (\leadsto degree .
b
b

For *n* odd: polynomial identity (
$$
\leadsto
$$
 degree bound of 4 for every *n*)
\n
$$
\sum_{i=1}^{n+1} s_i^4 - \frac{1}{n+1} = \frac{2}{n+1} (\sum_{i=1}^{n+1} s_i^2 - 1) + \sum_{i=1}^{n+1} (s_i^2 - \frac{1}{n+1})^2
$$
\nFor *n* even: already for *n* = 4 degree 8 necessary

 $i=$ nr For n even: already for $n=4$ degree 8 necessary