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SDP for solving systems of polynomial equations

A moment approach to analyze the zero set of polynomial
equations

T he univariate case

T he multivariate case



SYSTEM OF POLYNOMIAL EQUATIONS

S — g1(x1,...,2n) = 0;...; gn(x1,...,2zn) = O.
where g; € Rlz1,...,zn] foralli=1,..., n.

The polynomial ideal I = {(g1,...,9n) C R[z1,...,2zn], 9enerated
by the family {g;} is assumed to be zero-dimensional, i.e. the
algebraic variety

Vo) .= {z€C"|gi(z) =0 k=1,...,n} is finite
Define
VR(I) == {z €R"|gy(x) =0 k=1,....n}
be the set of real zeros of the system S.

Efficient Symbolic software packages exist, especially if S is in
triangular form (e.g., Aubry, Lazard, Maza, Rouillier)



Numerical solution via SDP-relaxations

Moment matrix. With a € N, and ya,....an ~ /xi‘l X dy

1 | 910 %o,1 | %20 ¥1,1 Y02
¥v10 | %20 Y11 | Y30 Y21 Y12
0,1 Y1.1 Y02 Y21 Y12 Y
My(y) = | P01 | vr wo2 | w21 w12 w03
v20 | ¥30 Y21 | Y40 Y31 Y22
Yy11 | ¥21 vi2 | Y31 Y22 Y13
vo2 | Y12 w03 | ¥22 Y13 Y04

In general, if My(y)(i,1) = yo and M,(y)(1,j) = yg then

Mr(y)(%,7) = Ya+8 = Yay4+PB1.....an+0Bn



Localizing matrix.

Given a polynomial 6 : R"—R of degree w, with coefficient vector
0 ¢ R5(W) et M, (0y) be the localizing matrix

Mr(0y)(3,3) = ) 0aYia(ij)+a}-

For instance, with = — 0(z) = 1 — 27 — 23, M>(0y) =

1 — Y20 — Y02, Y10 — Y30 — Y12, Y0l — Y21 — Y03
Y10 — Y30 — Y12, Y20 — Y40 — Y22, Y11l — Y21 — Y12
| Y01 — Y21 — Y03, Y11 — Y21 — Y12, Y02 — Y22 — Y04 |

If My(y)(i,5) = yp then My(0y)(i,j) = >0 0ayp+a that s,

M (09) (i, )~ [ o 0() u(d)



If (1,y) is the vector of moments up to order 2r of some probabil-
ity measure u on the Borel sets of R", then for every polynomial
qg(x) : R*"—R of degree at most r,

(@, Mr()a) = [ a(@)?u(de) > 0,
so that M,(y) > 0. Similarly,
(@, Mr(0y)a) = [ 0(2)a(w)? j(da) > O,
and thus M,(0y) = 0 whenever u is supported on {0(x) > 0}.

The K-moment problem identifies those vectors y with M, (y) >

O that are moments of a measure . with support contained
in K.

Dual theory in algebraic geometry = representation of poly-
nomials, positive on a semi-algebraic set K



With f € R[z], introduce the family {Q;} of SDP-relaxations
Y (87

M;(y) =0
L M’L—,Uk(gky) — 07 k — 17"'7n'

and the family {Q7} of their dual

Q;

N\

( m
max —X(1,1) — 0)Z.(1,1
| e, XD = 3 (0201, 1)
Qi \ m o
s.t. (X,Ba)+ Y (Z},CF) = fa, Va#0
\ k=1

where we write

Mz(y) — Z yOéBOé; Mz—fuk(gky) — Z yacg, k = 1, ..M
(@ (@



I. Numerical solution via SDP-relaxations
Let f € R[x] be arbitrary, fixed.
Theorem: Let I be a zero-dimensional radical ideal. Then :

() maxQr, = minQry, = min{f(xz)| = € S}, for some rg, and
all » > rq.

(b) f—f*=qo+ 2?21 q; g; for some s.o.s. polynomials {q; ;?:1.

(c) Every optimal solution y* = {y*} of Q, is the vector of mo-
ments of some probability measure supported on the real zeros
of d.

So, when [ is a radical zero-dimensional ideal, Q, is exact for
all » > rg. (Lasserre (grid case), Laurent, Parrilo for the general
case)



Solving Systems of polynomial equations with GLOPTIPOLY
software:
CPU times in seconds and SDP-relaxation orders
required to extract at least one solution



problem n | m|d M N CPU MI | sol
boon 6 6 |4 | 3002 52864 | 1220 4 8
bifur 3| 3 |9]| 454 8717 8.20 5 2
brown 5 5 5| 461 4001 6.27 3 1
butcher e 7 |4 6434 | 120156 - 4 mem
camerals 6 6 |2 209 952 1.33 2 2
caprasse 4 | 4 4| 209 1285 0.58 3 2
cassou 4 | 4 | 8| 4844 | 280151 - 38 mem
chemequ 5 5 |3 461 3661 0.48 3 1
chemequs 5 5 1|3 124 486 6.73 2 1
cohn?2 4 | 4 |6 209 1229 0.48 3 1
cohn3 4 | 4 |6 209 1229 0.55 3 1
comb3000 || 10| 10 | 3| 1000 4951 24.6 2 1
conforml 3 3 |4 383 430 0.22 3 2
conform?2 3| 3 |4 83 430 0.19 3 2
conform3 3 3 |4 285 3766 3.89 5 4
conform4 3| 3 |4]| 454 8946 12.2 6 2
cpdmb 5 5 13 125 446 0.24 2 1
dl 12112 |3 - - - 3 dine
desl8_3 8 | 8 | 3] 12869 | 303945 - 4 mem
des22 24 | 10|10 |2 | 1000 5016 77.2 1 1




problem n | m|d M N CPU MI | sol
discret3 8| 8 |2]| 44 39 0.31 1 1
ecob 5 5 | 3] 461 3661 5.98 3 1
ecoob 6 6 | 3| 923 7980 | 57.4 3 1
eco’ { 7 | 3| 1715 | 15921 | 256 3 1
ecos8 8 | 8 | 3300229565 | 1310 3 1
fourbar 4 | 4 |4 69 229 0.16 2 1
geneigd 6 6 | 3| 923 7602 | 33.2 3 1
heart 8 | 8 | 4| 3002 | 31545 | 1532 3 2
i1 10| 10| 3| 1000 | 4366 | 44.1 2 1
ipp 8 | 8 |[2]| 494 | 2385 | 6.42 2 1
katsurab 6 6 | 2| 209 952 0.74 2 1
kinema 9 O |2 714 | 3520 | 26.4 2 1

kinl 12112 | 3 - - - 3 dim
kulO 10| 10| 2| 1000 | 5016 | 72.5 2 1
lorentz 4 | 4 | 2| 209 1705 0.64 2 2
manocha | 2 2 | 8 90 326 1.27 6 1
noon3 3| 3|3 83 430 0.22 3 1
noon4 4 | 4 | 3| 209 1285 0.65 3 1
noonb5 5 5 | 3| 461 3241 4.48 3 1

[
[



problem n | m|d M N CPU MI | sol
proddeco | 4 4 | 4 69 229 0.11 2 1
puma 8 8 | 213002 | 35505 1136 3 4
quadfor2 | 4 | 4 |4 | 209 1495 0.75 3 2
quadgrid 5 5 5] 461 3641 10.52 3 1
rabmo 9 O [ 5|5004 | 51703 - 3 mem
rbopl 6 6 | 3| 923 7602 36.9 3 1
redecob 5 5 |2 20 41 0.16 1 1
redeco6 6 6 | 2 27 55 0.13 1 1
redeco7 7 7 |2 35 71 0.14 1 1
redeco8 8 8 | 2 44 89 0.13 1 1
rediff3 3 3 |2 9 19 0.09 1 1
reimerb5 5 5 | 6| 6187 | 264516 - 6 mem
rose 3 3 19| 679 16681 79.5 { 2
sO_1 8 8 | 2| 494 2385 5.45 2 1
sendra 2 2 |7 65 453 0.34 5 1
solotarev | 4 | 4 | 3 69 257 0.24 2 1
stewartl 9 O | 2| 714 3520 20.4 2 2
stewart?2 || 12 | 10| 2| 1819 9191 372 2 1 12
trinks 6 6 | 3| 209 925 0.78 2 1
Virasoro 38 8 | 2 44 89 0.16 1 1




II. Characterization of zeros

Problems : Give conditions on the coefficients of {g;} to ensure
that

o Vo(I) =VRr(), i.e., S has only real zeros

o Vo(I) = VRr(I) and VR (1) C K for some specified semi-algebraic
set K C R".

e V(1) C K for some specified subset K C C™ (or semialgebraic
set K’/ of R2™).

13



T he univariate case.
Let g € R[z] with z — g(z) = 2"t + ana™ + ... + ao.

Conditions on the {a;} for the n zeros {z(j)} C C (counting
multiplicities) of g to be all real and contained in the interval
[u, v] C R.
Define the Newton sums (counting multiplicities)
1 2 Nk
s 1= — > xz(j) Ek=0,1,...,
n ._
1=1
The si.'s are the moments of the probability measure

1 mn
U= — E 533(]-) counting multiplicities
n
]:1

Hence, write that u is supported on K := [u, v]!!
14



Let H(n,s) and M(n,s) be the respective Hankel matrices

1 $1 ... Sp | [ 5q S2 ... Sp41 ]
S1 S cer Sp41 i and S 1) cee Sp42
| Sn Sp41 .- Son | Sn4+1 Sn42 - Son41 |

Theorem : [Lasserre (J. Alg. Comb. (2002))]

(i) All the zeros of g are real iff M(n,s) = 0.
( and rank(My,(s,y)) are distinct.)

(ii) All the zeros of ¢ are real and contained in [u,v] Iff :

v.H(n,s) = M(n,s) = u.H(n,s)

15



The (univariate) complex case

The complex moment matrix : Consider the basis of monomials

2 2 1— _n—1 —_n

1,2,2,2°,22,2°,...,2, 2" "2z,...22" ~,2", ...

of the complex polynomials g € C[z, z], that is,

z— q(z,z) = Zqijzizj for finitely many g;;.
For a measure p on C let y;; = [z'2/dp for all 4,5 = 0,1,...,
and let M,(y) be its moment matrix, i.e.,

[My(i,1) = ypq and My(1,5) = yow] = Mr(i,j) = Yp4-v,q+w-
Then, V f € C[z,z] with degree < r, and coefficient vector f,
(£, Mief) = [ F(2)£(2) p(dz) = [ [f1dp,

so that M,(y) is Hermitian and positive semidefinite (M,(y) = 0)
16



Let z — p(2) :=ag+aiz+...anz"+2"1T1 € R[z] be a polynomial
with real coefficients, and let

K:={ze€C| gr(z,z) >0, k=1,...,m}

be a given (nonnecessarily compact) semialgebraic set of C.

Problem: Under which condition on the coefficients {a;} do
we have all the zeros of p contained in K7

Example : K = {z € C| 2z 4z < 0} for stability of linear
systems, which gave the Routh-Hurwitz and Liénard criteria in-
volving determinants, linear in the coefficients of p.

Some necessary and sufficient conditions provided in the pioneer-
ing work of Kalman, later extended by Mazko, Gutman and Jury,

Chilali and Gahinet, ...
17



Let {z(k)}}_, C C be the n zeros of p (counting their multiplic-
ity), and define the probability measure u on C

1 .
po= ) Oy Vi = /?sz dp = yj;.
" E=1

Hence, M,(y*) = 0 is a real symmetric matrix.

y(’Sj = y;fo = /zj du = s; jg, Newton sum = f;(a)

The Newton sums s;'s are known and (easy to compute) func-

tions of the a;'s, but not the yjj.

18



However, because p(z) = 0, we have

P =3 HOE P =3 HhEF

k=0 k=0
for some {G.(p)} C R.

Hence, for all p, g we have

() ypg = D V(0D Y5 for some {v;;(p,q)} C R.
0<¢,7<n

and the ~;;(p,q)’'s are easy to compute.

19



So define the moment matrix M, (y) (or M,(y,s))

1 s1 s1 s2 w11 s2

S1 Y11 S2 Y12 Y12 S3
. S1 S22 Y11 83 Y12 Y12

Ex: Ma(y) = Ma(y,s) =

2(y) 2(y,5) So> Y12 S3 Y22 Y13 S4

Y11 Y12 Y12 Y13 Y22 Y13

So 83 Y12 S4 Y13 Y22

with y unknown in lieu of y*, and using (*) to have

ypa = Y i @) vij
0<7,7<n

Therefore, M;(y,s) contains only the n(n 4 1)/2 variables {y;;},
with 1 < i << n.

20



For z — g1(2,2) = X0 9k(u,v)z% 2¥, define the localizing matri-
ces {Mr(gg,y,s)}

Mr(y, S)(Zaj) — Ypgq — Mr(gk7y75)<@,]) — ng(u,v) yp—l—u,q—l—’v
for all k=1,...,m, and again using (*).

Theorem : Let u be the uniform probability measure on the
zeros of p (counting multiplicities). Then:

(a) The SDP constraint M»,,(y,s) = O yields a unique solution
y*, the vector of moments of u (up to order 2n).

(b) All the zeros of p are contained in K if and only if M, (g%, y*,s) >~
O, forallk=1,...,m

T he proof uses a nice result of Curto and Fialkow on flat positive

extensions of moment matrices.
21



Multivariable case C"

Consider the system S of polynomial equations

hi(xz1) = 0; ho(x1,22) = 0;...; hn(x1,22,...,2n) = 0

in triangular form, where :

hk(il?) — hkl(aj17 JR 7$k—1)x?];k + hk‘Q(ajlv R 7xk>v k=2,...,n

and hp1(x1,...,2_1) 7 0 whenever h;(x) =0,k =1,... k— 1.

(i) Every system of polynomial equations associated with a zero-
dimensional ideal is a finite union of such triangular systems

(ii) Symbolic computation packages can obtain this form.

22



Let {z(k)}\_; C C™ be the ¢ complex zeros of the system S.
Then, if one defines the generalized Newton sums

1 t
Saq 1= /z?l---sz‘n du, Wwith p = n Z 5z(k)
k=1

(**) One may compute {sq} recursively as rational fractions of
the coefficients of the polynomials {h;} that define S.

Similarly, let

Yas = /Ea 2" ju(dz) a, B € N".

As in the one-dimensional case,

(%) Ups = 2. 7ap(1,0) Yas
o, B <r; Vi

23



So, once the {yzﬁ} (with «;,8; < r; for all j = 1,...,n) are
known, then all the 935'5 are known via (*)!

Let K:={z€C"| gi(2,2) >0, k=1,...,m} C C" be given.

One defines the multivariable analogues of the moment matrix
M;y(y,s) and localizing matrices My, »(y,s), with y unknown in
lieu of y* and using (*)

(*) Yné — Z ’7046(7775) Yap
a;,B;<r; V1
so that Mr(y,s) and Mg, »(y,s) contain only the variables {y,g}
with «;,6; < r; forall: =1,...,n.

24



Theorem : Let u be the uniform probability measure on the
zeros of S (counting multiplicities). Let rg := ;?:1 r;j—1. Then:

(a) The SDP constraint M»,,(y,s) = O yields a unique solution
y*, the vector of moments of u (up to order 2rg).

(b) rank(Mo>,,(y,s) gives the number of distinct zeros of S.

(c) Let I ={(91,.--,9n).- f € R[z] of degree 2p or 2p — 1. Then
feVI & My(u*)f =0.

(d) All the zeros of p are contained in K if and only if M5, (g, y*,s) =
O, forall k=1,...,m

Again, we use Curto and Fialkow’s result on flat positive exten-
sions of moment matrices.
25



Real zeros

Let K C R"™ be the semi-algebraic set

Let M,(y) be the real moment matrix with rows and columns

indexed in the basis 1,z1,...,2n,2%,..., 2.

If u is a probability measure with support on the real zeros of S
and y = {ya} is the vector of its moments, one has

(%) yg = . 7a(B)ya
;<1 V1
for some real coefficients {~va(3)}«, €asy to compute.

Replace yg with (*) in M;(y), whenever §; > r;, for some j. So,
My (y) has only finitely many unknowns {y}, for all r.

26



Theorem : Let rg:=3"_;r; —1. Then:

(a) The number sg of distinct zeros of S is the maximum rank of
the real moment matrices M,,(y) which are positive semidefinite.

(b) Let My (y*) = O with rank(Mr,(y*)) = sg. Then, M;(y*) = 0O
and M,(y*) has rank sg for all r > rg.

(c) Let I = {g91,..-,9n), and f € R[z] be of degree <r. Then

fel(VR(I)) & Mr(y")f = 0.

(d) All the zeros of p are contained in K if and only if M:(gx,y™) =
O, forall k=1,...,m

(**) Solving M,,(y) = 0 with M, (y) of maximal rank is NP-
hard!!

27



Note in passing that

S has only real zeros if and only if M;,(s) = 0, where s = {sqa} is
the (known) vector of Newton’'s sums of S.
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