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1. Enumerative geometry

Given 4 lines in general position in 3-space,
how many lines intersect all of them?

Answer: 2.

H. Schubert, Kalklul der abzahlenden Geometrie

1879



Problem: Given mp subspaces of dimension p
in general position in a vector space of dimen-
sion m + p, how many subspaces of dimen-
sion m intersect all these given subspaces non-
trivially?

Let the row spaces of

represent the given subspaces, and the row
spaces of K € Mat(m x (m 4+ p)) the unknown
subspaces. Then the condition is equivalent to

det % =0, jg=1,...,mp.

Two solutions K1 and K5 are considered equiv-
alent if K1 = AK» for A € GL(m).

How many equivalence classes of solutions does
this system have~?



Answer for complex spaces (Schubert, 1886):

1121 .. (p— 1) (mp)!
m!m+1)!...(m+p—1)"

d(m,p) =

For example:

m= 2 3 4 5 6
p=2 2 5 14 42 132
p=3 42 462 6006 87516
p=4 24024 1662804 140229804

Notice: d(m,?2) is the m-th Catalan number.

We study this problem for real subspaces. For
example, if (m,p) = (2,2), it may have no real
solutions.



Combinatorial interpretation: d(m,p) is the num-
ber of Standard Young Tableaux of the shape
P X m.

1 3 4 9
2 6 4 11
5 3 10 12

Or the number of ballot sequences: mp elec-
tors vote for p candidates, a,b,c,..., such that
at any time a leads over b, b leads over c etc.,
and the election ends in a tie between all can-
didates. For example,

a,b,a,a,c,b,b,c,a,c,b,c.



2. Control of a linear system by static output
feedback.

K -
R™ A RP
u € -5 C RS
xz € R
r = Ax -+ Bu,
y = Cu,
u = Ky.

Elimination gives

i+ = (A+ BKC)z.

Pole placement Problem: given real A,B,C
and a real polynomial q of degree n, find real
K, so that

det (\[ — A — BKC) = q(\).



Using:
a) A coprime factorization

C(zI — A 1B=D@G)"ING%),

det D(z) = det (21 — A),
b) The identity

det (I + PQ) = det (I 4+ QP),
we rewrite the characteristic polynomial as
det (z1 — A— BKC(C)
= det (2] — A)det (I — (21 — A)"1BKC)
= det (2] — A)det (I — C(zI — A)~1BK)
= det D(z)det (I — D(2)"I1N(2)K)
= det (D(z) — N(2)K)

_ ‘ D(z) N(2) ‘
K I '



We want to find a real K, so that this deter-
minant has prescribed zeros Zj:

D(z;) N(z;)

i 7 =0, g7=1,...,n.

These are n equations in mp variables (the en-
tries of K).

If n > mp the problem is unsolvable for an open
set of data.

If n < mp it always has (real!) solutions (A.
Wang, 1996).

The critical case: n = mp. This is a special
case of Schubert’'s problem.



3. Rational curves with prescribed inflection
points

F:PLSPY, f=(f1:...:fp), p=n+1.

A point z € Pl is an inflection point if the
Wronskian determinant

fi ... f{)_i
1
W(f17"'7fp): f2 f2
fy i

equals zero at this point.

A real rational curve is called maximally in-
flected if all inflection points are real.

If d =deg f we have f = Ae, where
e(z) =(1,2,...,2%, E:Pl P

and A is a linear projection P2 — P™.



Then
W(fl,...,fp) — det AF,

where
(1 O 0 )
z 1 0
E(z)=| 22 2z ... . ,
\ 24 dzd-1 (zd)(”) )

the matrix whose columns are derivatives of
e(z). So W(z) = 0 if and only if KerA inter-
sects ImE non-trivially.

Thus the problem of finding maximally inflected
curves with prescribed inflection points is a
special case of the Schubert problem and of
the Pole placement problem.



4. Grassmannian G(m,m + p)

— the set of m-subspaces in C™tP

— the set of m x (m + p) matrices of rank m,
modulo equivalence:

A~ Bif A=UB, detU # 0.

Plucker embedding:

m

G(m,m+p) - PV, N = (m—l—p) — 1.

All m X m minors serve as homogeneous COOr-
dinates.

An m-subspace K intersects a given p-subspace
@ non-trivially iff

Q| _
det‘K = 0,

a linear equation in Plucker’'s coordinates.
d(m,p) is the number of intersections of
Gc(m,m+ p) with a generic subspace of codi-
mension mp in CPY. It does not depend on
the subspace in the complex case.



5. The Wronski map ¢ : G(m, m + p) — P™P,

(q1,---5ap) = W(aq1,-- -, ap)-

Here a point in G(m,m + p), that is an m-
subspace in Cm+P, IS represented by p polyno-
mials of degree d = m—+p—1, their coefficients
serve as coefficients of p linear forms defining
the m-subspace. The Wronskian determinant
IS a polynomial of degree mp—+1, it is identified
with a point in P™P, using the coefficients as
homogeneous coordinates of this point.

¢ IS a regular map between smooth projective
varieties. It is in fact a projection map, re-
stricted to the image of the Grassmannian un-
der the Plucker embedding.



6. Degree of a map f: X —Y.

a) If X is oriented,

degf=+ )  sgndet f'(z).
zef~1(y)

The vertical projection on this picture has
degree +1.



b) If X and Y are not orientable, let X — X
and Y — Y be orientable coverings of degree
2. Their covering groups are {+1}.

If there exists a lifting

fi XY,
which commutes with the {£1} action, we de-
fine deg f = deg f.

f is called orientable if f exists.

For connected X and Y and orientable f, deg f
is defined as an integer, up to sign.

If all preimages of a regular value belong to
one affine chart, the degree can be computed
by the usual formula. Orientability of the map
guarantees that the result does not depend on
the chart.



Theorem 1 The degree of the real Wronski
map

¢ : GR(m,m + p) - RP™P

is £1(m,p), where I(m,p) = 0 iff m+p is odd.
For odd m + p we have I(m,p) =

1120 (p— 1) (pm/2)!
(m—-—p+2)!(m—-—p+4)---(m+p—2)!

X(m— DI(m—-2)---(m—p-+1)!
<m—g—|—1)! (m—g—l—i‘})! o (m—I—Qp—l)!a

Some values of I(m,p):

m= 3 4 5 6 7 8 9
p=210 2 O 5 0 14
p=3 02 0 12 0 110 0
p=4 0 12 0 286 0 12376
p=5 0 286 0 33592 O
p==6 0 33592 O

Notice: I(2k+1,2) is the k-th Catalan number.



Corollary 1 For odd m + p, the preimage of
every point in RP™P under the Wronski map is
non-empty. For a generic point it contains at
least I(m,p) points.

Corollary 2 If the given subspaces in the Schu-
bert problem are osculating the normal rational
curve at real points, and m-+p is odd, then the
problem has at least I(m,p) real solutions.

Corollary 3 Ifd+n is odd, there are maximally
inflected curves of degree d in P™ with arbitrary
prescribed real inflection points. There are at
least I(d—n,n-+1) such non-equivalent curves.



For p = 2 and odd m, the lower estimate
I(m,2) in all these Corollaries 1-3 is best pos-
sible:

Example 1 Ifp = 2, the preimage in Gg(m, m+
2) of some points in RP2™ under the real Wron-
ski map consists of I(m,2) simple points.

Theorem 2 If m and p are both even, then

the Wronski map omits a non-empty open set
in RP™P,

Corollary 4 If m and p are both even, there
iIs a nhon-empty open set of pole configurations
for which the pole placement problem has no
real solutions.

Question Is the real Wronski map surjective
when both m and p are odd?



7. Combinatorial interpretation of I(m,p).

For any initial segment, a has at least as many
votes as b, b has at least as many as ¢, etc.,
but the election ends with a tie between all
candidates.

For example,

o= (aabcbachec).

The number of ballot sequences with p candi-
dates and mp voters equals d(m, p), the degree
of the complex Grassmann variety (Frobenius,
MacMahon).

An inversion is a pair of ballots where the order
of candidates is non-alphabetical. For the se-
quence above, the total number of inversions
invo = 6.

Then:
I(m,p) = 3 (—1)nve,

all ballot seq



Theorem (Dennis White, 2000).

I(m,p) =0 ifm+ p is even, and for odd
m-+p, I(m,p) = the number of shifted standard
Young tableaux with (m +p—1)/2 cells in the

top row, (m—p—+1)/2 cells in the bottom row,
and of height p:

1 2 4 5
3 6 3
7 9

Explicit expression for the number of such tableaux
was given by Thrall in 1952 (“Hook Formula").



Boris and Michael Shapiro Conjecture: If all
zeros of the Wronskian determinant of several
polynomials are all real, the polynomials can
be made real by a non-degenerate linear trans-
formation.

The following theorem proves the conjecture
for the case of two polynomials.

Connection with rational functions: put f =
f1/f2- Then critical points of f in C coincide
with zeros of W (f1, f2).

Theorem 3 If all critical points of a rational
function belong to a circle (on the Riemann
sphere), it maps this circle into a circle.



Proof of Theorem 3.

Equivalence of rational functions: f ~ g if f =
fog, degl = 1.

Theorem (L. Goldberg, 1990) Given 2m points
on the Riemann sphere, there exist d(m,?2)
classes of rational functions with these criti-
cal points.

Theorem 4 Given 2m points on a circle, there
exist d(m,2) classes of rational functions with
these critical points, mapping this circle into
itself.

Theorem 3 follows.



Sketch of the proof of Theorem 4.

R is the class of rational functions f such that:
f(T) CcT, deg f = m+ 1, all critical points are
simple and belong to T, f(1) =1, f(1) = 0.

Net~ = f~1(T), modulo orientation-preserving
homeomorphisms of C, fixing 1, symmetric with
respect to T.

All nets for d = 4 (parts inside T).



Lemma. There are d(m,2) nets.

A labeling of a net: non-negative function on
the set of edges, symmetric with respect to T,
and satisfying

> p(e) =2mr for every face G.
ecoG

For example: p(e) = length f(e).
critical set: 2m points on T, including 1 € T.

Fix a net v. Let L be the space of all labelings
and >~ the space of all critical sets. They are
convex polytopes of the same dimension. The
Uniformization Theorem gives



Dy Ly — 2 4.
T his map is continuous for each #~.

A B O

Proof of surjectivity of &.

a) Extension to Ly — 4.

b) Combinatorics of the boundary map (de-
generacy of rational functions)

c) Topological lemma: Let & be a continuous
map of closed convex polytopes of the same di-
mension. If the preimage of every closed face
(of any dimension) has homology groups of
one point (in particular, this preimage is non-
empty and connected), then & is surjective.
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