

Implementing Algebraic Routines in Exact Solid Modeling

John Keyser Department of Computer Science Texas A&M University

MSRI Workshop

Outline

Background and Motivation

- Boundary Evaluation
- The Robustness Issue
- Exact Computation
- Prior Work
- Exact Boundary Evaluation
- Extensions
- Conclusion

CSG (Constructive Solid Geometry)

• Boolean combinations of primitive solids

A - B В

• Difference, Union, Intersection

• Standard primitives:

- boxes/wedges
- ellipsoids
- cones/cylinders
- tori
- Useful:
 - Design
 - Ray-tracing

Computer Science

B-reps (Boundary Representations)

• Describe the boundary of a solid object

B-reps

- Boundary surfaces usually broken up into patches
 - Polygons, triangles
 - Curved patches (e.g. NURBS)
- Useful:
 - Interactive visualization
 - Mesh generation

Boundary Evaluation

- Converting CSG to B-rep

 More generally, finding surface after operation
- Primary operations involve intersecting sets of surfaces, curves

WISKI WOIKSHOP

Bradley Fighting Vehicle (exterior)

- BRL-CAD
- Primitives:
 - Polyhedra
 - generalized cones
 - ellipsoids
 - tori

Bradley Fighting Vehicle (interior)

- 2725 objects
- Each 0 to 20+ CSG operations

Submarine Storage Room

- Submarine Storage
 Room
 - Over 5000 Solids
 - Low-degree
- Model courtesy of Electric Boat, a division of General Dynamics

Outline

Background and Motivation

- Boundary Evaluation
- The Robustness Issue
- Exact Computation
- Prior Work
- Exact Boundary Evaluation
- Extensions
- Conclusion

Robustness

- Algorithm fails on input data

 Serious problem for geometric algorithms
- Two major sources
 - Numerical Error
 - Degenerate Data
- Curved surfaces magnify the problem

Robustness problems

- Numerical error
 Initial
 - approximations
 - Intermediate calculations
 - Inconsistent data

Robustness Problems

- Degenerate data
 Not in general position
- Numerical error creates/removes

- Want both *accurate* and *robust* boundary evaluation
 - Accurate curved surfaces, correct positions
 - Robust handle all input cases
- Automatic evaluation no individual tuning

Outline

Background and Motivation

- Boundary Evaluation
- The Robustness Issue
- Exact Computation
- Prior Work
- Exact Boundary Evaluation
- Extensions
- Conclusion

What is Exact Computation?

- Represent and operate so that you are guaranteed to always make correct *decisions*
- Differs from exact arithmetic

So Why Use Exact Computation?

- Helps solve robustness problems
- Eliminates all numerical error
- A useful/necessary precursor to completely addressing degeneracies

So Why Not Use Exact Computation?

- No HW supported arithmetic operations/numbers
- Can be *extremely* slow (10,000+ times slower on basic problem) for naïve approach
- Little exact infrastructure
- Previous real-world application limited

What About Input?

- Real-world data not exact
- Exactness yields consistency
- Goal is reliable computation, not exact output

Theme

Ensure correctness first, then increase efficiency.

VS.

Create an efficient implementation, then work to make it more robust.

April 14, 2004

MSRI Workshop

Outline

Background and Motivation

- Boundary Evaluation
- The Robustness Issue
- Exact Computation
- Prior Work
- Exact Boundary Evaluation
- Extensions
- Conclusion

Previous Work – Boundary Evaluation

- Earliest systems for polyhedral models
 - Braid'75, Requicha/Voelcker `82, Mantyla `88, Hoffmann `89, Requicha/Rossignac `92, Benouamer et al. `94
- Study of freeform/curved surface intersections
 - Sarraga `83, Abhyankar/Bajaj `88, Farouki `89, Hohmeyer `91, Manocha `91, Goldman '91
- Boundary evalution on sculptured solids
 - Casale et al. `85, Weiler `85, Johnstone `91, Yu `92
 - Krishnan et al. `97,`98,`03

Previous Work – Robustness Issues

- Robustness issues highlighted especially in solid modeling community
 - Sugihara/Iri `89, Hoffmann `89, Segal `90, Yu
 '91, Jackson `95, Fang et al. `93, Higashi et al.
 `95, Fortune `95, Desaulniers et al. '92
- Major efforts in computational geometry
 - Robustness considerations now common
 - Library support CGAL

Previous Work – Numeric Error

- Tolerances, Interval Arithmetic around for decades
- Numerous more recent techniques, applications specifically for geometry
 - Jackson `95, Hu et al. `96, Comba/Stolfi `93,
 Guibas et al. `95, Milenkovic `88, Massotti `93

Previous Work – Exact Computation

- Idea is old, more recent focus is on efficient computation
 - Benouamer et al. '94, Fortune/van Wyk '93, Johnson '92, Clarkson '95, Shewchuck '96, Yap/Dube '95, Bronnimann et al. '94, Karasick et al. '91,
- For polynomial systems, major work in the computer algebra, algebraic geometry communities

Outline

- Background and Motivation
- Exact Boundary Evaluation
 - Exact Representations
 - Key Operations
 - Implementation and Performance
- Extensions
- Conclusion

Exact Boundary Evaluation

- Linear solids relatively easy
 - Only rational numbers needed
 - Success for small cases
- Curved solids more difficult
 - Evaluation algorithm is more complex
 - Algebraic number representations
 - Higher degrees very inefficient
 - No previous implementations

Surface Representation

- Rational parametric surfaces – Implicit form also stored
- Polynomials with rational coefficients

Surface Representation

- Standard CSG Primitives
 Algebraic degree 4 (biquadratic parametric)
- General Geometric Modeling
 - Bicubic parametric patches
 - Algebraic degree 18
 - Higher degree patches sometimes desired

Patch Representations

- Surface
- Domain
- Trimming curves

April 14, 2004

MSRI Workshop

Curve Representation

- Represented in patch domain only
- Arise from intersection of two surfaces
 Standard CSG primitives: bidegree 8 max (usually less)
- Polynomial with rational coefficients
 Real algebraic plane curve
- Might not have rational parameterization

Curve Representations

Curve Manipulation

- Only need a portion of each curve
- Need to be able to manipulate curve
 - Want to treat like parametric
 - Sort points along curve
 - Generate points at intervals
 - Classify point as on/off curve
- Curve topology

Curve Manipulation

- Break into monotonic segments
- Nonoverlapping bounding boxes
- Limited domain

April 14, 2004

MSRI Workshop

Point Representation

- Intersection of two curves within a 2D interval
- Unique, exact
- Compare point to point/constant

- Given two algebraic plane curves, isolate all intersections over some region
- Assume general position
- *Key operation* can be called >1000 times for each Boolean operation

- Given:
 - Two algebraic plane curves
 - Domain
- Convert to series of 1D problems

- Resultants eliminate one variable
- Isolate coordinates individually (Sturm sequences)

- Form boxes for potential intersections (Sakkalis
- Each box contains zero or one intersection

- Intersect curves with boxes (Sturm sequences)
- Determine which boxes contain intersections

Point Representation (continued)

- Sometimes know exact rational value for one or both coordinates
- Use hybrid representation – more efficient computation

Curve/Curve Example

- Earlier example, intersect with hodograph curve (to find turning points)
- Time= 95.666 ms.
- X[0] = ([-411/512, -205/256], [1299/8589934592, 20785/137438953472])
- X[1] = ([-409/512, -51/64], [5197/34359738368,20789/137438953472])

Outline

- Background and Motivation
- Exact Boundary Evaluation
 - Exact Representations
 - Key Operations
 - Implementation and Performance
- Extensions
- Conclusion

Implementation

- Set of kernel operations
 - Exact implementation
 - Key to efficiency
- Boundary evaluation built on top of kernel routines

Kernel Operations

- Curve-curve intersection
- Curve Topology
- Point Inversion
- Point Classification
- Surface Generation

Point Inversion

- Map point from one patch to another
- Direct solution very slow

Point Inversion

• Rephrase as point matching

Point Inversion

- Make use of domain-specific knowledge to recast 7D or 4D problem into 2D problems with simple 3D checks
- Will not provide general-purpose inversion
 - Points must be intersections of curves
 - Curves must be intersections of surfaces
 - Requires solving for *all* real roots in one domain

Increasing Efficiency

- Efficient/hybrid representations
- Lazy Evaluation
- Lower-dimensional Formulation
- Quick Rejection
- Using Floating-point hardware
 - Floating-point filters
 - Floating-point guided computation

Combining Methods

- Some methods can offset each other
 Lazy evaluation and f.p. guided computation
- Some methods solve same cases
 - Quick rejection and f.p. filters
- Together, these methods provide *several orders of magnitude* of speed improvement over a naïve exact implementation

Outline

- Background and Motivation
- Exact Boundary Evaluation
 - Exact Representations
 - Key Operations
 - Implementation and Performance
- Extensions
- Conclusion

ESOLID System Performance

Applied to real-world cases

 Performance, with speedups, within one order of magnitude of Boole system

Importance of Accuracy

Input Primitives

Output Solid

April 14, 2004

MSRI Workshop

0.8

1

63

Importance of Accuracy

Timing Breakdown: Bradley Examples

- Of total time:
 - -54% to 98% in curve-curve intersections
- Of curve-curve intersection time:
 - 4% to 87% in resultant computations
 - -3% to 96% in Sturm computations
- Longer overall times *generally* imply:
 - Higher % of total time in curve-curve
 - Higher % of curve-curve time in Sturm

ESOLID Problems:

- Assumes General Position
 - Does not handle any actual degeneracies
 - Fails by crash, infinite loop
- Efficient only for low-degree surfaces

 Complexity explodes rapidly for higher degrees

Outline

- Background and Motivation
- Exact Boundary Evaluation
- Extensions
 - Degeneracy Detection
 - Numerical Perturbation
- Conclusion

- Want way to find/represent points even in degenerate cases
 - Tangential intersections
 - Intersections at curve singularities
 - -3 or more curves meeting at a point
- Allow certain degeneracies to be detected, represented cleanly

Rational Univariate Reduction (RUR)

- Use as an alternative representation for points
- Capable of handling degenerate situations smoothly
- Can be used for detecting degeneracies, or as part of a routine to handle them directly
- Roullier uses with Groebner bases
 - Non-Groebner methods/implementations iterative

RUR operation

- Given *m* polynomials in *n* variables
 Rational coefficients
- Determine all roots of system by finding a set of polynomials:
 - h(x):minimal polynomial $h_1(\alpha), h_2(\alpha), etc.$ coordinate polynomials

RUR operation (continued)

- Determine the roots of the minimal polynomial
- Evaluate those roots in coordinate equations
- Result gives coordinates of every common root of original system
 - For positive dimensional components, gives one point on that component.

Context for Our Implementation

- Fits into precision-driven computation model
 - LEDA and EGC work
 - Core library
- Extends model to handle arbitrary roots of polynomials
 - Includes complex roots, for intermediate computation

Implementing the RUR

- Exact implementation of sparse resultant
 - Following Emiris's approach
 - Exact implementation throughout
- Polynomial interpolation
 - Avoid symbolic operations
 - Vandermonde interpolation of coefficients

Computing with the RUR

- Given the RUR, can find roots of minimal polynomial
 - Various techniques Aberth's method is one for iteratively converging to roots.
 - Could usually just determine real roots
- Substitute these into coordinate polynomials to determine (complex) coordinates of roots.

Computing the RUR **Find Roots** Minimal α_1 α_2 α_n • • • (Aberth's Polynomial Method) x-coordinate z-coordinate y-coordinate Polynomial Polynomial Polynomial $\alpha_{n,x}$ $\alpha_{1,x}$ $\alpha_{2,x}$ $\alpha_{n,y}$ $\alpha_{1,y}$ $\alpha_{2,y}$. . . $\alpha_{n,z}$ $\alpha_{1,z}$ $\alpha_{2,z}$ April 14, 2004 MSRI Workshop 74

Dealing with Complex Numbers

- Do not fit into existing root-bound approaches
 - Can determine real/imaginary parts separately
 - Root bounds determined independently
- Find real roots
 - Meet root bounds to show imaginary part = 0
 - Often can simplify

Representing Roots

- The evaluation process can determine bounding intervals (boxes) around each root
 - Positive dimensional component detection probabilistic approach from random perturbations
- Can be used in geometric computations just like previous methods – e.g. for quick rejection tests

Functionality

- Each root is found by one point
- Degeneracies handled cleanly:
 - Tangential intersections
 - Singularities in curves/surfaces
 - Points lying on curves/surfaces
 - Coincident points/curves/surfaces

Timing Results

- Quadric curve intersections arising from real-world boundary evaluation cases:
 - MAPC (ESOLID): .017 -.024 seconds
 - RUR: .317-1.772 seconds
 - Approximately 20-100 times slower!
- Cases with degenerate intersections, positive dimensional components, higher dimension, all successful

Timing Breakdown

- Slows rapidly with higher degrees/dimensions
- For lower dimension/degree, the size of the matrix tends to determine running time
 - Increases quickly with degree/dimension
- At higher dimension/degree, coefficient size of coordinate polynomials grows very quickly and tends to dominate time
- Need a hybrid approach for efficiency

Department of Computer Science

Checking Root Bounds

- Surprisingly, >98% of time was spent in computation of the RUR itself, not in checking root bounds.
 - Root bounds could conceivably take longer, with repeated construction in precision-driven system.

Optimizations

- Most optimizations are *not* implemented yet.
- Prior experience shows filtering and similar approaches can yield significant speedups
- Difficult to filter the sparse resultant matrix calculations
- May be able to filter over coefficients of the coefficient equations
- Possibly make higher degree/dimension more practical, but unlikely to ever beat MAPC

Outline

- Background and Motivation
- Exact Boundary Evaluation
- Extensions
 - Degeneracy Detection
 - Numerical Perturbation
- Conclusion

Numerical Perturbation

- Predicated on a test to detect degeneracies
- Idea: Since we have exact computation, we can eliminate degeneracies by perturbing the data numerically (not symbolically)
 - Symbolic must relate predicates directly to input
 - Filtering should make perturbed data not much slower in non-degenerate cases.

Numerical Perturbation

- Key is capturing the designer's intent
 - Random or local perturbation of input surfaces in boundary evaluation can easily lead to undesirable results
 - True for numeric or symbolic perturbation

Numerical Perturbation

- New approach assumes only one degenerate situation, at known point in CSG-style tree.
- Perturbation will be less than some tolerance value.
- Handling multiple degeneracies can *apparently* be done by using different order of magnitude perturbation values.

Generating Perturbation

- Idea: need to perturb "in" or "out" at level where degeneracy is occurring.
- Capture designer's intent (see Sugihara/Iri):
 - Union perturb both out
 - Intersection perturb both in
 - Difference (A-B) A in, B out

Propagating Information

- Propagate to children, all the way to leaves

 For difference A-B, must propagate opposite
 perturbation direction
- Apply scale in/out at leaves
 - Note: some particular degeneracies remain after such scaling – very rare, but possible
 - Could combine with (smaller) translation

Recalculating

- Result is perturbed primitives
- Must repeat calculations for entire tree
- When original degenerate operation is reached, no degeneracy anymore

Performance

- Usually moderate increase in time for recomputation with perturbed data

 Occasionally far more (7x as long!)
 Percentage fails of f.p. filter increases
- Successfully resolves cases with degeneracies

Outline

- Background and Motivation
- Exact Boundary Evaluation
- Extensions
- Conclusion

Summary

- Exact boundary evaluation for curved solids
 - Reasonable efficiency
 - Increased robustness
 - Low degree surfaces
 - General position

Summary

- RUR method can find solutions to degenerate systems easily
 - Application to several degenerate cases
 - Less efficient than other general-position methods
 - Currently used for detection, not handling
- Numerical perturbation technique to eliminate degeneracies

Ongoing Work

- Implementing Degeneracy Code
 - Speedup techniques
 - Hybridization of representation/computation
 - Integrating into ESOLID
- Numerical Perturbation
 - Implementing as program-controlled loop
 - Combining multiple perturbations
 - Accounting for scale-invariant degeneracies

Ongoing Work

- Geometric level of detail filtering
 - Plane curves, Parametric surfaces
 - Understanding tradeoffs in filters
- User control over accuracy/robustness

 Specify by desired property, not computational process

Ongoing Work

- Avoid direct algebraic computations
 - Standard geometric Bezier patch intersections
 - Provide boundaries for intersection curves in patch domain
 - Arbitrary accuracy
 - What can we tell from intersections of this curve representation?

Future Work

- Non-manifold representation
- Parallelization
- I/O and intermediate storage

Collaborators

- ESOLID: (UNC)
 - Dinesh Manocha
 - Tim Culver
 - Shankar Krishnan
 - Mark Foskey
- Faculty:
 - J. Maurice Rojas (TAMU Math)
- Students:
 - Koji Ouchi
 - Ian Remmler

Support

- BRL-CAD and Bradley Model:
 Army Research Lab
- Funding (recent):
 - NSF-CARGO (Incubator): DMS-0138446
 - NSF ITR: CCR-0220047

Questions?

• Thanks for your attention

• Contact:

- keyser@cs.tamu.edu
- http://research.cs.tamu.edu/keyser/geom