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CSG (Constructive
Solid Geometry)

• Boolean
combinations
of primitive
solids

• Difference,
Union,
Intersection
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CSG

• Standard primitives:
– boxes/wedges

– ellipsoids

– cones/cylinders

– tori

• Useful:
– Design

– Ray-tracing
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B-reps (Boundary
Representations)

• Describe the
boundary of
a solid object
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B-reps

• Boundary surfaces usually broken up into
patches
– Polygons, triangles
– Curved patches (e.g. NURBS)

• Useful:
– Interactive visualization
– Mesh generation
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Boundary Evaluation

• Converting CSG to B-rep
– More generally, finding surface after operation

• Primary operations involve intersecting sets
of surfaces, curves
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Boundary Evaluation:
Simple Example
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Bradley Fighting
Vehicle (exterior)

• BRL-CAD

• Primitives:
– Polyhedra
– generalized cones
– ellipsoids
– tori
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Bradley Fighting
Vehicle (interior)

• 2725 objects

• Each 0 to 20+ CSG
operations
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Submarine Storage Room

• Submarine Storage
Room
– Over 5000 Solids
– Low-degree

• Model courtesy of Electric
Boat, a division of
General Dynamics
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Robustness

• Algorithm fails on input data
– Serious problem for geometric algorithms

• Two major sources
– Numerical Error
– Degenerate Data

• Curved surfaces magnify the problem
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Robustness problems

• Numerical error
– Initial

approximations

– Intermediate
calculations

– Inconsistent data
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Robustness Problems

• Degenerate data
– Not in general

position

• Numerical error
creates/removes
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Goal

• Want both accurate and robust boundary
evaluation
– Accurate – curved surfaces, correct positions

– Robust – handle all input cases

• Automatic evaluation – no individual tuning
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What is Exact
Computation?

• Represent and operate so that you are
guaranteed to always make correct
decisions

• Differs from exact arithmetic
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So Why Use Exact
Computation?

• Helps solve robustness problems

• Eliminates all numerical error

• A useful/necessary precursor to completely
addressing degeneracies
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So Why Not Use
Exact Computation?

• No HW supported arithmetic operations/numbers

• Can be extremely slow (10,000+ times slower on
basic problem) for naïve approach

• Little exact infrastructure

• Previous real-world application limited
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What About Input?

• Real-world data not exact

• Exactness yields consistency

• Goal is reliable computation, not exact
output
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 Theme
Ensure correctness first, 
then increase efficiency.

Create an efficient implementation, 
then work to make it more robust.

vs.
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Previous Work –
Boundary Evaluation

• Earliest systems for polyhedral models
– Braid’75, Requicha/Voelcker `82, Mantyla `88,

Hoffmann `89, Requicha/Rossignac `92, Benouamer et
al. `94

• Study of freeform/curved surface intersections
– Sarraga `83, Abhyankar/Bajaj `88, Farouki `89,

Hohmeyer `91, Manocha `91, Goldman ’91

• Boundary evalution on sculptured solids
– Casale et al. `85, Weiler `85, Johnstone `91,  Yu `92
– Krishnan et al. `97,`98,`03
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Previous Work –
Robustness Issues

• Robustness issues highlighted especially in
solid modeling community
– Sugihara/Iri `89, Hoffmann `89, Segal `90, Yu

’91, Jackson `95, Fang et al. `93, Higashi et al.
`95, Fortune `95, Desaulniers et al. ’92

• Major efforts in computational geometry
– Robustness considerations now common

– Library support – CGAL
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Previous Work –
Numeric Error

• Tolerances, Interval Arithmetic around for
decades

• Numerous more recent techniques,
applications specifically for geometry
– Jackson `95, Hu et al. `96, Comba/Stolfi `93,

Guibas et al. `95, Milenkovic `88, Massotti `93
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Previous Work –
Exact Computation

• Idea is old, more recent focus is on efficient
computation
– Benouamer et al. `94, Fortune/van Wyk `93,

Johnson `92, Clarkson `95, Shewchuck `96,
Yap/Dube `95, Bronnimann et al. `94, Karasick
et al. `91,

• For polynomial systems, major work in the
computer algebra, algebraic geometry
communities
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Exact Boundary
Evaluation

• Linear solids relatively easy
– Only rational numbers needed

– Success for small cases

• Curved solids more difficult
– Evaluation algorithm is more complex

– Algebraic number representations

– Higher degrees very inefficient

– No previous implementations
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Surface Representation

• Rational parametric surfaces
– Implicit form also stored

• Polynomials with rational coefficients
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Surface Representation

• Standard CSG Primitives
– Algebraic degree 4 (biquadratic parametric)

• General Geometric Modeling
– Bicubic parametric patches

• Algebraic degree 18

– Higher degree patches sometimes desired
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Patch Representations

• Surface

• Domain

• Trimming curves



April 14, 2004 38MSRI Workshop

Curve Representation

• Represented in patch domain only

• Arise from intersection of two surfaces
– Standard CSG primitives: bidegree 8 max (usually less)

• Polynomial with rational coefficients
– Real algebraic plane curve

• Might not have rational parameterization
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Curve Representations

382933409820669003196713865430094203187838850691401812970460827681502003200 x4y2 -
159316795201622074223650790789613829790651395833729616712610453913600 x4y -
4130927475362116243835859246013253831252573339820099436158667227751487375 x4 -
77192131470752123955423438963146322282958823780111175493724500131840 x3y +
3716426671057241252846511576732374690782442737540106966934142592866290720 x3 +
765866819641338006393427730860188406375677701382803625940921655363004006400 x2y2 -
309070421201018981537219598627407347376077829328701082705441828372480 x2y +
7425903571989547190948922596971310846678952823433730739648099737766232094 x2 -
77192131470752123955423438963146322282958823780111175493724500131840 xy -
3716564352735855528405199583935793613721079631596555083611994905063427104 x +
382933409820669003196713865430094203187838850691401812970460827681502003200 y2 -
149753625999396907313568807837793517585426433494971465992831374458880 y -
4130911991700648202824812762953512676336122789886470960893780431639385999
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Curve Manipulation

• Only need a portion of each curve

• Need to be able to manipulate curve
– Want to treat like parametric

– Sort points along curve

– Generate points at intervals

– Classify point as on/off curve

• Curve topology
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Curve Manipulation

• Break into monotonic segments

• Non-
overlapping
bounding
boxes

• Limited
domain
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Point Representation

• Intersection of two
curves within a 2D
interval

• Unique, exact

• Compare point to
point/constant
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Curve-Curve Intersection

• Given two algebraic plane curves, isolate all
intersections over some region

• Assume general position

• Key operation – can be called >1000 times
for each Boolean operation
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Curve-Curve Intersection

• Given:
– Two algebraic

plane curves
– Domain

• Convert to series of
1D problems
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Curve-Curve Intersection

• Resultants
eliminate one
variable

• Isolate coordinates
individually (Sturm
sequences)
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Curve-Curve Intersection

• Form boxes for
potential
intersections
(Sakkalis

• Each box contains
zero or one
intersection
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Curve-Curve Intersection

• Intersect curves
with boxes (Sturm
sequences)

• Determine which
boxes contain
intersections
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Point Representation
(continued)

• Sometimes know
exact rational value
for one or both
coordinates

• Use hybrid
representation –
more efficient
computation
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Curve/Curve
Example

• Earlier example, intersect with hodograph
curve (to find turning points)

• Time= 95.666 ms.

• X[0] = ([-411/512, -205/256],
[1299/8589934592, 20785/137438953472])

•  X[1] = ([-409/512, -51/64],
[5197/34359738368,20789/137438953472])
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Implementation

• Set of kernel operations
– Exact implementation

– Key to efficiency

• Boundary evaluation built on top of kernel
routines



April 14, 2004 52MSRI Workshop

Kernel Operations

• Curve-curve intersection

• Curve Topology

• Point Inversion

• Point Classification

• Surface Generation
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Point Inversion

• Map point from
one patch to
another

• Direct solution
very slow
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Point Inversion
• Rephrase as point matching
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Point Inversion

• Make use of domain-specific knowledge to
recast 7D or 4D problem into 2D problems
with simple 3D checks

• Will not provide general-purpose inversion
– Points must be intersections of curves

– Curves must be intersections of surfaces

– Requires solving for all real roots in one
domain
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Boundary Evaluation
 Stage 1: Pairs of Patches

Intersection
Curve

Curve
Topology

Intersect
Boundary

Curve
Correspond

Clip
Curve

Curve
Intersect

Curve
Topology

Point
Inversion

Classify
Point

Surface
Generation

Boundary Evaluation Pipeline

Kernel Operations
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Boundary Evaluation
 Stage 2: Each Patch

Merge
Curves

Partition
Patch

Classify
Partitions

Form
Solid

Curve
Intersect

Curve
Topology

Point
Inversion

Classify
Point

Surface
Generation

Boundary Evaluation Pipeline

Kernel Operations
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Increasing Efficiency

• Efficient/hybrid representations

• Lazy Evaluation

• Lower-dimensional Formulation

• Quick Rejection

• Using Floating-point hardware
– Floating-point filters
– Floating-point guided computation
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Combining Methods

• Some methods can offset each other
– Lazy evaluation and f.p. guided computation

• Some methods solve same cases
– Quick rejection and f.p. filters

• Together, these methods provide several
orders of magnitude of speed improvement
over a naïve exact implementation



April 14, 2004 60MSRI Workshop

Outline

• Background and Motivation

• Exact Boundary Evaluation
– Exact Representations

– Key Operations

– Implementation and Performance

• Extensions

• Conclusion



April 14, 2004 61MSRI Workshop

ESOLID System
Performance

• Applied to real-world cases
– Performance, with speedups, within one order

of magnitude of Boole system
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Importance of Accuracy

Input Primitives Output Solid
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Importance of Accuracy

Input Primitives Intersection Curves in 
Patch Domain
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Timing Breakdown:
Bradley Examples

• Of total time:
– 54% to 98% in curve-curve intersections

• Of curve-curve intersection time:
– 4% to 87% in resultant computations
– 3% to 96% in Sturm computations

• Longer overall times generally imply:
– Higher % of total time in curve-curve
– Higher % of curve-curve time in Sturm
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ESOLID
Problems:

• Assumes General Position
– Does not handle any actual degeneracies

– Fails by crash, infinite loop

• Efficient only for low-degree surfaces
– Complexity explodes rapidly for higher degrees
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Goal

• Want way to find/represent points even in
degenerate cases
– Tangential intersections
– Intersections at curve singularities
– 3 or more curves meeting at a point

• Allow certain degeneracies to be detected,
represented cleanly
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Rational Univariate
Reduction (RUR)

• Use as an alternative representation for points

• Capable of handling degenerate situations
smoothly

• Can be used for detecting degeneracies, or as part
of a routine to handle them directly

• Roullier – uses with Groebner bases
– Non-Groebner methods/implementations iterative
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RUR operation

• Given m polynomials in n variables
– Rational coefficients

• Determine all roots of system by finding a
set of polynomials:
h(x): minimal polynomial
h1(a), h2(a), etc. coordinate polynomials
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RUR operation
(continued)

• Determine the roots of the minimal
polynomial

• Evaluate those roots in coordinate equations

• Result gives coordinates of every common
root of original system
– For positive dimensional components, gives

one point on that component.
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Context for Our
Implementation

• Fits into precision-driven computation
model
– LEDA and EGC work

– Core library

• Extends model to handle arbitrary roots of
polynomials
– Includes complex roots, for intermediate

computation



April 14, 2004 72MSRI Workshop

Implementing
the RUR

• Exact implementation of sparse resultant
– Following Emiris’s approach

– Exact implementation throughout

• Polynomial interpolation
– Avoid symbolic operations

– Vandermonde interpolation of coefficients
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Computing
with the RUR

• Given the RUR, can find roots of minimal
polynomial
– Various techniques – Aberth’s method is one

for iteratively converging to roots.

– Could usually just determine real roots

• Substitute these into coordinate polynomials
to determine (complex) coordinates of roots.
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Computing the RUR
Find Roots
(Aberth’s
Method)

Minimal
Polynomial

z-coordinate
Polynomial

y-coordinate
Polynomial

x-coordinate
Polynomial

a1,x

a1,y

a1,z

a2,x

a2,y

a2,z

an,x

an,y

an,z

a1 a2 an
…

…
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Dealing with
Complex Numbers

• Do not fit into existing root-bound
approaches
– Can determine real/imaginary parts separately

– Root bounds determined independently

• Find real roots
– Meet root bounds to show imaginary part = 0

– Often can simplify
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Representing Roots

• The evaluation process can determine
bounding intervals (boxes) around each root
– Positive dimensional component detection –

probabilistic approach from random
perturbations

• Can be used in geometric computations just
like previous methods – e.g. for quick
rejection tests
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Functionality

• Each root is found by one point

• Degeneracies handled cleanly:
– Tangential intersections

– Singularities in curves/surfaces

– Points lying on curves/surfaces

– Coincident points/curves/surfaces
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Timing Results

• Quadric curve intersections arising from
real-world boundary evaluation cases:
– MAPC (ESOLID):  .017 -.024 seconds
– RUR: .317-1.772 seconds
– Approximately 20-100 times slower!

• Cases with degenerate intersections,
positive dimensional components, higher
dimension, all successful
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Timing Breakdown

• Slows rapidly with higher degrees/dimensions

• For lower dimension/degree, the size of the matrix
tends to determine running time
– Increases quickly with degree/dimension

• At higher dimension/degree, coefficient size of
coordinate polynomials grows very quickly and
tends to dominate time

• Need a hybrid approach for efficiency
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Checking
Root Bounds

• Surprisingly, >98% of time was spent in
computation of the RUR itself, not in
checking root bounds.
– Root bounds could conceivably take longer,

with repeated construction in precision-driven
system.
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Optimizations

• Most optimizations are not implemented yet.
• Prior experience shows filtering and similar

approaches can yield significant speedups
• Difficult to filter the sparse resultant matrix

calculations
• May be able to filter over coefficients of the

coefficient equations
• Possibly make higher degree/dimension more

practical, but unlikely to ever beat MAPC



April 14, 2004 82MSRI Workshop

Outline

• Background and Motivation

• Exact Boundary Evaluation

• Extensions
– Degeneracy Detection

– Numerical Perturbation

• Conclusion



April 14, 2004 83MSRI Workshop

Numerical Perturbation

• Predicated on a test to detect degeneracies

• Idea: Since we have exact computation, we
can eliminate degeneracies by perturbing
the data numerically (not symbolically)
– Symbolic must relate predicates directly to

input

– Filtering should make perturbed data not much
slower in non-degenerate cases.
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Numerical Perturbation

• Key is capturing the designer’s intent
– Random or local perturbation of input surfaces

in boundary evaluation can easily lead to
undesirable results

– True for numeric or symbolic perturbation
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Numerical Perturbation

• New approach assumes only one degenerate
situation, at known point in CSG-style tree.

• Perturbation will be less than some
tolerance value.

• Handling multiple degeneracies can
apparently be done by using different order
of magnitude perturbation values.
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Generating Perturbation

• Idea: need to perturb “in” or “out” at level
where degeneracy is occurring.

• Capture designer’s intent (see Sugihara/Iri):
– Union – perturb both out

– Intersection – perturb both in

– Difference (A-B) – A in, B out
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Propagating Information

• Propagate to children, all the way to leaves
– For difference A-B, must propagate opposite

perturbation direction

• Apply scale in/out at leaves
– Note: some particular degeneracies remain after

such scaling – very rare, but possible

– Could combine with (smaller) translation
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Recalculating

• Result is perturbed primitives

• Must repeat calculations for entire tree

• When original degenerate operation is
reached, no degeneracy anymore
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Performance

• Usually moderate increase in time for
recomputation with perturbed data
– Occasionally far more (7x as long!)

– Percentage fails of f.p. filter increases

• Successfully resolves cases with
degeneracies
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Summary

• Exact boundary evaluation for curved solids
– Reasonable efficiency

– Increased robustness

– Low degree surfaces

– General position
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Summary

• RUR method can find solutions to
degenerate systems easily
– Application to several degenerate cases

– Less efficient than other general-position
methods

– Currently used for detection, not handling

• Numerical perturbation technique to
eliminate degeneracies
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Ongoing Work

• Implementing Degeneracy Code
– Speedup techniques
– Hybridization of representation/computation
– Integrating into ESOLID

• Numerical Perturbation
– Implementing as program-controlled loop
– Combining multiple perturbations
– Accounting for scale-invariant degeneracies
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Ongoing Work

• Geometric level of detail filtering
– Plane curves, Parametric surfaces

– Understanding tradeoffs in filters

• User control over accuracy/robustness
– Specify by desired property, not computational

process
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Ongoing Work

• Avoid direct algebraic computations
– Standard geometric Bezier patch intersections

– Provide boundaries for intersection curves in
patch domain

– Arbitrary accuracy

– What can we tell from intersections of this
curve representation?
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Future Work

• Non-manifold representation

• Parallelization

• I/O and intermediate storage
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Questions?

• Thanks for your attention

• Contact:
– keyser@cs.tamu.edu

– http://research.cs.tamu.edu/keyser/geom


