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Running Example of a Game
Players: Alice, Bob, Chris
Two pure strategies each:
0 and 1
a D Pr[Alice chooses 1]
b D Pr[Bob chooses 1]
c D Pr[Chris chooses 1]
If Alice chooses 1,
Bob chooses 0,
and Chris chooses 1,
then Alice's payoff is 1,
Bob's payoff is 0,
and Chris's payoff is 3. (-1,1,4) (1,1,2)
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Expected Payoff Functions
Payoff to Alice of picking pure strategy 0, is expected payoff conditioned on the
event Alice chooses 0:

2bcC2b.1� c/C�1.1�b/cC.�1/.1�b/.1� c/ D 2b�.1�b/ D 3b�1

Similarly, payoff to Alice from picking pure strategy 1:

0bc C 0b.1� c/ C 1.1� b/c C 1.1� b/.1� c/ D 1� b

Payoff to Bob of picking pure strategy 0:

0caC 0c.1� a/ C 1.1� c/aC 1.1� c/.1� a/ D 1� c

Payoff to Bob of picking pure strategy 1:

�2ca�2c.1� a/C3.1� c/aC3.1� c/.1� a/ D �2cC3.1� c/ D 3�5c



More Expected Payoff Functions
Payoff to Chris of picking pure strategy 0:

2abC 2a.1� b/C 4.1� a/bC 4.1� a/.1� b/ D 2aC 4.1� a/ D 4� 2a

Payoff to Chris of picking pure strategy 1:

ab C a.1� b/ C 5.1� a/b C 5.1� a/.1� b/ D aC 5.1� a/ D 5� 4a



Graphical Game
In a graphical game, the payoff to each player depends only on the actions of certain
other players. We can draw the dependencies as a directed graph. Our example
obeys the following graph:
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Totally Mixed Nash Equilibria
Nash equilibrium: No player could unilaterally improve own payoff.

Totally mixed Nash equilibria are those in interior of cube.

(a,b,c)

Payoffs to each player of own pure strategies are equal.

.1/ 3b � 1 D 1� b, i.e., b D 1=2

.2/ 1� c D 3� 5c, i.e., c D 1=2

.3/ 4� 2a D 5� 4a, i.e., a D 1=2

Single totally mixed Nash equilibrium: .1=2; 1=2; 1=2/.



Newton Polytope
Polytope: convex hull of a finite set of points in affine space.

Each monomial a�b� c � � � in n variables is associated with a lattice point
.�; �;  ; : : :/ 2 Nn.

Support of polynomial: monomials occurring with nonzero coefficient.

Newton polytope of polynomial: convex hull of lattice points in its support.
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Minkowski Sum and Mixed Subdivision
Minkowski sum of polytopes P1; : : : ;Pn is convex hull of v1 C � � � C vn where vi
is a vertex of Pi .

Translate faces of Pi along edges of Pj to get decomposition of Minkowski sum into
mixed subdivision (not unique).
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Bernstein-Kouchnirenko Theorem
The number of roots of a generic sparse system of polynomials is given by the mixed
volume of their Newton polytopes.

Computing the mixed volume is not easy!



Polynomial Graph
To a system of n polynomial equations f1 D 0; : : : ; fn D 0 in n unknowns
�1; : : : ; �n, we can associate a (non-unique) graph, the polynomial graph on n
vertices, as follows:
� To each vertex i assign one of the unknowns, �i , and one of the equations, fi .
�Draw an edge from vertex j to vertex k if and only if � j occurs in fk.



Example of a Polynomial System
�d1 C �d2 C � D 0I
�d1 C �d2 C � D 0I
�a1 C a2 C � D 0I

� D 0I
�b1 C �b2 C � D 0I
�b1 C �b2 C � D 0I
�c1 C �c2 C � D 0I
�c1 C �c2 C � D 0I



Example of a Polynomial Graph
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Determinant and Permanent
Recall that the determinant is an antisymmetric sum:

det
�
ai j
� D X

�2Sn

sgn. � /
nY

iD1
ai � .i/

The permanent is the corresponding symmetric sum:

per
�
ai j
� D X

�2Sn

nY
iD1

ai � .i/



Theorem (�, 2003)
Suppose the variables can be partitioned into sets T1; : : : ;TN of cardinalities
d1; : : : ; dN such that
1) All monomials occurring in the fi 's are squarefree;
2) If � j; �k 2 T with j 6D k then � j and �k do not both occur in any monomial
of any of the fi 's;
3) If there is some j 2 Ti such that there is an edge from v j to vk in G, then for
every j 2 Ti there is an edge from v j to vk in G.
Then if the polynomial system is 0-dimensional, the number of its solutions in
.C�/d is the permanent of the adjacency matrix of G, divided byQN

iD1 ..di/!/.



Example Permanental Formula
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Real Roots?
Theorem (Mclennan, Beitrage zur Algebra und Geometrie 1999) The maximum
number of real roots of a multihomogeneous system of polynomial equations is equal
to the mixed volume.



Real Roots for Real People
Corollary The permanental formula gives the maximum number of real roots of a
system obeying a polynomial graph, and in particular, the maximum number of
totally mixed Nash equilibria of a graphical game.


