April 14th, 2004 Algorithmic, Combinatorial and Applicable Real Algebraic Geometry Mathematical Sciences Research Institute Berkeley, California

How Many Totally Mixed Nash Equilibria Can Graphical Games Have?

> Ruchira S. Datta Google Inc. and MSRI

Running Example of a Game

Expected Payoff Functions

Payoff to Alice of picking pure strategy 0, is expected payoff conditioned on the event Alice chooses 0:

 $2bc+2b(1-c) + (-1)(1-b)c + (-1)(1-b)(1-c) = 2b-(1-b) = 3b-1$

Similarly, payoff to Alice from picking pure strategy 1:

 $0\,bc + 0\,b(1 - c) + 1(1 - b)c + 1(1 - b)(1 - c) = 1 - b$

Payoff to Bob of picking pure strategy 0:

 $0ca + 0c(1 - a) + 1(1 - c)a + 1(1 - c)(1 - a) = 1 - c$

Payoff to Bob of picking pure strategy 1:

 $-2ca - 2c(1-a) + 3(1-c)a + 3(1-c)(1-a) = -2c + 3(1-c) = 3-5c$

More Expected Payoff Functions

Payoff to Chris of picking pure strategy 0:

 $2ab + 2a(1 - b) + 4(1 - a)b + 4(1 - a)(1 - b) = 2a + 4(1 - a) = 4 - 2a$

Payoff to Chris of picking pure strategy 1:

 $ab + a(1 - b) + 5(1 - a)b + 5(1 - a)(1 - b) = a + 5(1 - a) = 5 - 4a$

Graphical Game

In agraphical game, the payoff to each player depends only on the actions of certain other players. We can draw the dependencies as a directed graph. Our example obeys the following graph:

Totally Mixed Nash Equilibria

Nash equilibrium: No player could unilaterally improve own payoff.

Totally mixed Nash equilibria are those in interior of cube.

Payoffs to each player of own pure strategies are equal. (1) 3b $-1 = 1 - b$, *i.e.*, $b = 1/2$ (2) 1 – $c = 3 - 5c$, *i.e.*, $c = 1/2$ (3) 4 $-$ 2a $=$ 5 $-$ 4a, *i.e.*, a $=$ 1/2

Single totally mixed Nash equilibrium: $(1/2, 1/2, 1/2)$.

Newton Polytope

Polytope: convex hull of a finite set of points in affine space.

Each monomial $a^{\alpha}b^{\beta}c^{\gamma}\cdots$ in n variables is associated with a lattice point $(\alpha, \beta, \gamma, \ldots) \in \mathbb{N}^n$.

Support of polynomial: monomials occurring with nonzero coefficient.

Newton polytope of polynomial: convex hull of lattice points in its support. $(0,\bar{0},0)$ $(0,1,0)$ $(0,0,1)$ (0,1,1) a b c $(0,\bar{0},0)$ $(0,0,1)$ (1,0,1) a b c $(0,\bar{0},0)$ $(1,0,0)$ $(0,1,0)$ (1,1,0) a b c $\bullet bc + \bullet b + \bullet c + \bullet$ $\bullet ac + \bullet a + \bullet c + \bullet$ $\bullet ab + \bullet a + \bullet b + \bullet$

Minkowski Sum and Mixed Subdivision

Minkowski sum of polytopes P_1, \ldots, P_n is convex hull of $v_1 + \cdots + v_n$ where v_i is a vertex of P_i . .

Translate faces of P_i along edges of P_j to get decomposition of Minkowski sum into mixed subdivision (not unique).

Bernstein-Kouchnirenko Theorem

The number of roots of a generic sparse system of polynomials is given by the mixed volume of their Newton polytopes.

Computing the mixed volume is not easy!

Polynomial Graph

To a system of *n* polynomial equations $f_1 = 0, \ldots, f_n = 0$ in *n* unknowns $\sigma_1, \ldots, \sigma_n$, we can associate a (non-unique) graph, the polynomial graph on n vertices, as follows:

- \bullet To each vertex i assign one of the unknowns, $\, \sigma_i,$ and one of the equations, f_i .
- Draw an edge from vertex j to vertex k if and only if σ_i occurs in f_k . .

Example of a Polynomial System

 $\bullet d_1 + \bullet d_2 + \bullet = 0$: $\bullet d_1 + \bullet d_2 + \bullet = 0$; $\bullet a_1 + a_2 + \bullet = 0;$ $\bullet = 0$; $\bullet b_1 + \bullet b_2 + \bullet = 0;$ $\bullet b_1 + \bullet b_2 + \bullet = 0$; $\bullet c_1 + \bullet c_2 + \bullet = 0;$ $\bullet c_1 + \bullet c_2 + \bullet = 0$;

Determinant and Permanent

Recall that the determinant is an antisymmetric sum:

$$
\det (a_{ij}) = \sum_{\sigma \in S_n} sgn(\sigma) \prod_{i=1}^n a_{i \sigma(i)}
$$

The permanent is the corresponding symmetric sum:

$$
\operatorname{per}\left(a_{ij}\right)=\sum_{\sigma\in S_n}\prod_{i=1}^n a_{i\,\sigma(i)}
$$

Theorem $(-, 2003)$

Suppose the variables can be partitioned into sets T_1, \ldots, T_N of cardinalities d_1, \ldots, d_N such that

1) All monomials occurring in the f_i 's are squarefree;

2) If σ_i , $\sigma_k \in T$ with $j \neq k$ then σ_j and σ_k do not both occur in any monomial of any of the f_i 's;

3) If there is some $j \in T_i$ such that there is an edge from v_j to v_k in G , then for every $j \in T_i$ there is an edge from v_j to v_k in G.

Then if the polynomial system is 0-dimensional, the number of its solutions in $(\mathbb{C}^*)^d$ is the permanent of the adjacency matrix of G, divided by $\prod_{i=1}^N ((d_i)!)$.

Example Permanental Formula

$$
\begin{pmatrix}\n0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0\n\end{pmatrix} = 0
$$

Real Roots?

Theorem (Mclennan, Beitrage zur Algebra und Geometrie 1999) The maximum number of real roots of a multihomogeneous system of polynomial equations is equal to the mixed volume.

Real Roots for Real People

Corollary The permanental formula gives the maximum number of real roots of a system obeying a polynomial graph, and in particular, the maximum number of totally mixed Nash equilibria of a graphical game.