Viginia
IglmTeth

Algebraic Geometry Applications in Model Selection

Luis David Garcia

| gar ci a@mat h. vt. edu

Virginia Polytechnic Institute and State University

Algorithmic, Combinatorial and Applicable Real Algebraic Geometry — p.1



mrglﬁTech Referen CeS

@ Asymptotic Model Selection for Naive Bayesian Networks by D.
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Bayesian Networks
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Binary Random Variables:
X ={X1, X, X3, X4, X5} ={F,E,S, A, C}.

Joint Probability Distribution: p(X = u) = [[7= p(X: = wi| pa;).
p(F, E, S5, A,C) = p(F)p(E)p(S|F)p(AIFE)p(C|A)

Number of joint space parameters D = 2° = 32.
Number of model parameters E =1+ 1+ 2+ 4+ 2 = 10.

The image of ¢ : R*¥ — R contains the set of all joint
distributions that factor according to G.
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Vi Homomorphisms and Recursive Factorization
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p(F=u, E=u2, 5 =u3, A=1uy,C =us) =

p(u1)p(uz)p(us|ur )p(ua|ur, uz)p(us|ug).

Let p,, be an indeterminate representing p(u1, ug, us, tg, Us).
Let R[D] = R[p, | u € {0,1}°].

Let ¢;;, be an indeterminate representing p(X; = j| pa; = k).
Let R[E] = R[q10, ¢20, 9300, 43015 - - - » @501]-

¢ : RE — RP is specified by ® : R[D] — R[E]

e e P PP

P0o0000 — 4104920493004400049500

p11111 — (1 — q10)(1 — q20)(1 — g301)(1 — qa011)(1 — g501)

@ The variety V (ker(®)) contains the set of all joint probability
distributions that factor according to G.
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@ Choose the appropriate model M that best fits a given set of
observations D.
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virgi%,rﬂh Model Selection

@ Choose the appropriate model M that best fits a given set of
observations D.
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e Bayesian Approach to Model Selection

Choose a model M that maximizes the

p(M|D) o p(M, D) = p(M)p(D|M)
= (M) [ (DM w)p(wlM)de
Q@ p(M) isthe
@ p(D|M) is called the marginal likelihood.
@ () denotes the domain of the model parameters w.

Q@ p(w|M) is the parameter prior.
BIC: Choose a model that maximizes In p(D|M).

Inp(D|My) = —23.26 Inp(D|Ms) = —23.46
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e Bayesian Approach to Model Selection

Choose a model M that maximizes the

p(M|D) x p(M, D) = p(M)p(D| M)
— p(M) /Q p(DIM, w)p(w] M) dw

Q@ p(M) isthe
@ p(D|M) is called the marginal likelihood.
@ () denotes the domain of the model parameters w.
Q@ p(w|M) is the parameter prior.
BIC: Choose a model that maximizes In p(D|M).

BIC score: Inp(D|M) = Nlnp(Dlwpyr) — 2In N + O(1), [Haughton
(1988)]
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2
p(u17u27u37u5) — Zp(u17u27u37l7u5)
=1
2
=Y p(u1)p(uz)p(uslu)p(llu, ug)p(us|l).
=1

2 .
Q. Let puyusustus = 2 1—1 Pujususlus D€ A representing the
observable probabilities p(uq, us, us, us).

@ Let R[D’] ¢ R[D] be the subring generated by these linear forms.

@ The variety V (ker(®) N R[D’]) contains the set of all observable
joint probability distributions that factor according to G.
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@ H is the hidden variable, and its levels 1,2, ...,r are called the

@ The observed random variables Fi, ..., F;,, are the features of the
model.

@ ker(®) is the ideal of the join of r copies of the Segre variety
STl,TQ,...,Tn = ]P)rl_l X ]P)r2_1 X X Prn_l C ]PDHTQWTTL_I.

@ The naive Bayesian network with r classes and n features
corresponds to the r-th secant variety of a Segre product of n
projective spaces:

V(ker(®) "NR[D']) = SI

r1,72,...,Tn
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Virginia Naive Bayesian Network (2)
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@ S=5,...r, IScontained in a space of dimension ryry---7r, — 1
(number of joint distribution parameters).

©

dim Sy, r,....r, €QuUalsd=ry +r9 +---+1r, —n.

©

The expected dimension of S™ equals
min{H r; — 1, rd+r—1}.
=1

@ rd+ r — 1 equals the number of model parameters of M.

@ When S™ does not have the expected dimension, S is
(r — 1)—defective.
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@ The r-th secant variety of any projective variety is singular along
the (r — 1)-st secant variety.

Q If r =r; =2, the naive Bayesian model M with two features is
singular along the Segre variety S.

[Geiger, Heckerman, King, Meek 2001]

T

@ @ """"" @ S? =52, ,=Sec(P!x. .. xP)

g&dgenay

Y (ra LOREERE En S"=8S=P' x...xP!
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e Asymptotic Approximation for the Marginal Likelihood

@ Maximize p(D|M) = [, e“YD-NIw:M) (| M) dw.

@ N = |D|, u(w|M) is the prior parameter density for M, and L is
the log-likelihood function of M.

Theorem (Watanabe 2001, Geiger and Rusakov 2002)

Let I(N) = [, e N7 p(w)dw where W, is some closed e-box

around wg, which is a minimum point of f in W, and f(wgy) = 0.
Assume that f and p are analytic functions, u(wg) # 0. Then,

InI(N)=XMInN+ (m; —1)Inln N + O(1)

where the rational number \; < 0 and m; are the largest pole and its
multiplicity of the analytic continuation of

Algorithmic, Combinatorial and Applicable Real Algebraic Geometry — p.11



e Resolution of Singularities

Resolution Theorem [Atiyah 1970]

Let f(w) be a real analytic function defined in a neiborhood of 0 € R<.
Then there exists an open set W that contains 0, a real analytic
manifold U, and a proper analytic map g : U — W such that:

1. g: U\ Uy — W\ W, is an isomorphism, where W, = f~1(0) and

Up = g~ (Wo).
2. For each point p € U there are local analytic coordinates
(u1,...,uq) centered at p so that, locally near p,
flg(ur, .. ua)) = alur, ... ug)uy’ - - ug?,

where k; > 0 and a(u) is an analytic function with analytic inverse

1/a(u).
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Q@ Leta;=p(F;=1H=1),b;=p(F;,=1H=0),t=p(H =1),

0. =p(F = x).
O =t [al'(1—a)" " + @1 —t) [ ] 67 (1 —bs)' "
1=1 1=1

@ Let I[N, Yp] be the marginal likelihood of data with averaged
sufficient statistics Yp

I[N,Yp] = / e 2o Ve In0e() () dw.
(0’1)2n—|—1
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Vigha Theorem [Geiger and Rusakov 2002]

IIN,Yp| = / eN 2w Yo In0a(w) () dw.
(071)2n—|—1

Assume the following conditions
1. The density u(w) is bounded and bounded away from zero on .
2. The statistics Yp = (Y7, ..., Yon) satisfy Y; > 0.

3. There exists N, such that Y equals the limiting statistics Y for all
N > N.
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Viginia Theorem [Geiger and Rusakov 2002]
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IIN,Yp| = / eN 2w Yo In0a(w) () dw.
(071)2n—|—1

Then forn >3 as N — oo
@ IfY € 52\ S’ (regular point)

In I[N, Yp] = N In P(Y|wars) — 2”; LN+ o),
@ IfY € 57\ S” (type 1 singularity)
2n — 1
InI[N,Yp]|=NInP(Y|wpyr) — In N + O(1),
@ IfY € S” (type 2 singularity)
n—+1
InI[N,Yp] = NInP(Y|wr) — In N + O(1),
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