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Bayesian Networks
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Binary Random Variables:
X = {X1, X2, X3, X4, X5} = {F, E, S, A, C}.

Joint Probability Distribution: p(X = u) =
∏n=5

i=1 p(Xi = ui| pai).

p(F, E, S, A, C) = p(F )p(E)p(S|F )p(A|FE)p(C|A)

Number of joint space parameters D = 25 = 32.

Number of model parameters E = 1 + 1 + 2 + 4 + 2 = 10.

The image of φ : R
E −→ R

D contains the set of all joint
distributions that factor according to G.
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Homomorphisms and Recursive Factorization

p(F = u1, E = u2, S = u3, A = u4, C = u5) =
p(u1)p(u2)p(u3|u1)p(u4|u1, u2)p(u5|u4).

Let pu be an indeterminate representing p(u1, u2, u3, u4, u5).

Let R[D] = R[pu | u ∈ {0, 1}5].

Let qijk be an indeterminate representing p(Xi = j| pai = k).

Let R[E] = R[q10, q20, q300, q301, . . . , q501].

φ : R
E → R

D is specified by Φ : R[D] → R[E]

p00000 −→ q10q20q300q4000q500

...

p11111 −→ (1 − q10)(1 − q20)(1 − q301)(1 − q4011)(1 − q501)

The variety V (ker(Φ)) contains the set of all joint probability
distributions that factor according to G.
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Model Selection

Choose the appropriate model M that best fits a given set of
observations D.
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Bayesian Approach to Model Selection

Choose a model M that maximizes the posterior model probability:

p(M |D) ∝ p(M, D) = p(M)p(D|M)

= p(M)

∫
Ω

p(D|M, ω)p(ω|M)dω

p(M) is the structure prior.

p(D|M) is called the marginal likelihood.

Ω denotes the domain of the model parameters ω.

p(ω|M) is the parameter prior.

BIC: Choose a model that maximizes ln p(D|M).

ln p(D|M1) = −23.26 ln p(D|M2) = −23.46

BIC score: ln p(D|M) = N ln p(D|ωML) − d
2 lnN + O(1), [Haughton

(1988)]
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Latent Models
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p(u1, u2, u3, u5) =
2∑

l=1

p(u1, u2, u3, l, u5)

=
2∑

l=1

p(u1)p(u2)p(u3|u1)p(l|u1, u2)p(u5|l).

Let pu1u2u3+u5
=

∑2
l=1 pu1u2u3lu5

be a linear form representing the
observable probabilities p(u1, u2, u3, u5).

Let R[D′] ⊂ R[D] be the subring generated by these linear forms.

The variety V (ker(Φ) ∩ R[D′]) contains the set of all observable
joint probability distributions that factor according to G.
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Latent Models
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Naive Bayesian Network (1)

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

F_2F_1 F_n

H

H is the hidden variable, and its levels 1, 2, . . . , r are called the
classes.

The observed random variables F1, . . . , Fn are the features of the
model.

ker(Φ) is the ideal of the join of r copies of the Segre variety

Sr1,r2,...,rn
:= P

r1−1 × P
r2−1 × · · · × P

rn−1 ⊂ P
r1r2···rn−1.

The naive Bayesian network with r classes and n features
corresponds to the r-th secant variety of a Segre product of n
projective spaces:

V (ker(Φ) ∩ R[D′]) = Sr
r1,r2,...,rn
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Naive Bayesian Network (2)

S = Sr1,r2,...,rn
is contained in a space of dimension r1r2 · · · rn − 1

(number of joint distribution parameters).

dim Sr1,r2,...,rn
equals d = r1 + r2 + · · · + rn − n.

The expected dimension of Sr equals

min{

n∏
i=1

ri − 1, rd + r − 1}.

rd + r − 1 equals the number of model parameters of M .

When Sr does not have the expected dimension, S is
(r − 1)–defective.
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Singularities

The r-th secant variety of any projective variety is singular along
the (r − 1)-st secant variety.

If r = ri = 2, the naive Bayesian model M with two features is
singular along the Segre variety S.

[Geiger, Heckerman, King, Meek 2001]

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

F_2F_1 F_n

H

S2 = S2
2,2,...,2 = Sec(P1 × · · · × P

1)

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

F_2F_1 F_n

H

F_3 S′ = S2
2,2 × P

r3−1 × · · · × P
rn−1

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

F_2F_1 F_n

H

F_3 S′′ = S = P
1 × · · · × P

1
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Asymptotic Approximation for the Marginal Likelihood

Maximize p(D|M) =
∫
Ω

eL(YD,N |ω,M)µ(ω|M)dω.

N = |D|, µ(ω|M) is the prior parameter density for M , and L is
the log-likelihood function of M .

Theorem (Watanabe 2001, Geiger and Rusakov 2002)

Let I(N) =
∫

Wε

e−Nf(w)µ(w)dw where Wε is some closed ε-box

around w0, which is a minimum point of f in Wε, and f(w0) = 0.
Assume that f and µ are analytic functions, µ(w0) 6= 0. Then,

ln I(N) = λ1 lnN + (m1 − 1) ln lnN + O(1)

where the rational number λ1 < 0 and m1 are the largest pole and its
multiplicity of the analytic continuation of

J(λ) =

∫
f(w)<ε

f(w)λµ(w)dw Re(λ) > 0
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Resolution of Singularities

Resolution Theorem [Atiyah 1970]

Let f(w) be a real analytic function defined in a neiborhood of 0 ∈ R
d.

Then there exists an open set W that contains 0, a real analytic
manifold U , and a proper analytic map g : U −→ W such that:

1. g : U \U0 −→ W \W0 is an isomorphism, where W0 = f−1(0) and
U0 = g−1(W0).

2. For each point p ∈ U there are local analytic coordinates
(u1, . . . , ud) centered at p so that, locally near p,

f(g(u1, . . . , ud)) = a(u1, . . . , ud)u
k1

1 · · ·ukd

d ,

where ki ≥ 0 and a(u) is an analytic function with analytic inverse
1/a(u).
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Naive Bayesian model

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �

F_2F_1 F_n

H

Let ai = p(Fi = 1|H = 1), bi = p(Fi = 1|H = 0), t = p(H = 1),
θx = p(F = x).

θx = t
n∏

i=1

axi

i (1 − ai)
1−xi + (1 − t)

n∏
i=1

bxi

i (1 − bi)
1−xi .

Let I[N, YD] be the marginal likelihood of data with averaged
sufficient statistics YD

I[N, YD] =

∫
(0,1)2n+1

eN
P

x
Yx ln θx(ω)µ(ω)dω.
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Theorem [Geiger and Rusakov 2002]

I[N, YD] =

∫
(0,1)2n+1

eN
P

x
Yx ln θx(ω)µ(ω)dω.

Assume the following conditions

1. The density µ(ω) is bounded and bounded away from zero on Ω.

2. The statistics YD = (Y1, . . . , Y2n) satisfy Yi > 0.

3. There exists N0 such that YD equals the limiting statistics Y for all
N ≥ N0.

Then for n ≥ 3 as N −→ ∞:

If Y ∈ S2 \ S′ (regular point)

ln I[N, YD] = N lnP (Y |ωML) −
2n + 1

2
lnN + O(1),

If Y ∈ S′ \ S′′ (type 1 singularity)

ln I[N, YD] = N lnP (Y |ωML) −
2n − 1

2
lnN + O(1),

If Y ∈ S′′ (type 2 singularity)

ln I[N, YD] = N lnP (Y |ωML) −
n + 1

2
lnN + O(1),
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