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Example: Medium-Access Control

• Two transmitters, each with a queue that can hold up to 3 packets

• pak = probability that k − 1 packets arrive at queue a

p1 =
[
0.7 0.2 0.05 0.05

]
p2 =

[
0.6 0.3 0.075 0.025

]

• At each time step, each transmitter sees how many packets are in its
queue, and sends some of them; then new packets arrive

• Packets are lost when queues overflow, or when there is a collision,
i.e., both transmit at the same time
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Example: Medium-Access Control

We would like a control policy for each queue, i.e., a function mapping

number of packets in the queue 7→ number of packets sent

• One possible policy; transmit all packets in the queue.

Causes large packet loss due to collisions.

• The other extreme; wait until the queue is full

Causes large packet loss due to overflow.

• We’d like to find the policy that minimizes the expected number of
packets lost per period.
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Centralized Control

• Each transmitter can see how many packets are in the other queue

• In this case, we look for a single policy, mapping

pair of queue occupancies 7→ pair of transmission lengths

Decentralized Control

• Each transmitter can only see the number of packets in its own queue

• In this case, we look for two policies, each mapping

queue occupancy 7→ transmission length
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Markov Decision Processes

The above medium-access control problem is an example of a Markov
Decision Process (MDP)

• n states, and m actions, hence mn possible centralized policies

• However, the centralized problem is solvable by linear programming

The decentralized problem

• NP-hard, even with just two policies

• The set of policies achieving a given cost is a real variety

• We can use the ideas of optimization of semialgebraic sets to find
performance bounds and suboptimal policies
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Classification

Even for non-dynamic problems, often decentralized problems are much
harder than centralized ones.

For example, the classification problem; A radar system sends out n pulses,
and receives y reflections, where 0 ≤ y ≤ n.

p(y|X1) = prob. of receiving y reflections given no aircraft present

p(y|X2) = prob. of receiving y reflections given an aircraft present
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We measure y reflections, and decide if an aircraft is present. The cost
depends on the number of false positives/negatives.
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Centralized Classification

• X = {X1, . . . , Xn} are events that partition Ω, called hypotheses

• Y = {Y1, . . . , Ym} are events that partition Ω, called observations

X1 X2

Y1

Y2

Y3

We know which Yi occurred, and would like to pick which Xj occurred

i.e., we would like a policy γ : Y → X, which we specify via a matrix

Kyx =

{
1 if γ(y) = x

0 otherwise
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Error Probabilities

We have for all x ∈ X, y ∈ Y
• transition probabilities Ayx = Prob(y |x)

• prior probabilities px = Prob(x)

The error probability Ezx of z ∈ X being estimated and x occurring is

Ezx =
∑

y∈Y
Kyx Prob(y |x) Prob(x)

=
∑

y∈Y
KyxAyxpx
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Minimum Expected Cost

Assign cost Czx for estimating z when x occurs.

Then we minimize the expected cost

minimize
∑

x,y,z

CzxAyxpxKyz

subject to K1 = 1

Kyz ∈ {0, 1} for all y, x

• An optimization in nm variables Kij, with both linear and Boolean
constraints
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Minimum Expected Cost

Let Wyz =
∑

xCzxAyxpx = the cost of estimating z when y occurs.

Then the above problem is

minimize
∑

y,z

WyzKyz

subject to K ≥ 0

K1 = 1

Kyz ∈ {0, 1} for all y, z

• Just n easy problems; pick γ(y) = arg max
x
Wyx

• Relaxing the Boolean constraints gives a linear program whose optimal
value is the minimum expected cost
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Decentralized Classification

We have for each player i = 1, 2

• observations Y i = {Y i
1 , . . . , Y

i
m }

• hypotheses X i = {X i
1, . . . , X

i
m }

All four of these sets partition Ω.

The set of possible observations is therefore Y = Y 1 × Y 2

Notation

• y = (y1, y2) occurs means y1 ∩ y2 occurs

• We will use y1 to mean both the event y1 ∈ Y 1 as well as

the integer y1 ∈ {1, . . . ,m} in the natural way
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Joint Cost Function

The cost is Czx for estimating z ∈ X and x ∈ X occurs.

i.e, the cost is Cz1z2x1x2 when

• player 1 estimates z1 ∈ X1 and x1 ∈ X1 occurs

• player 2 estimates z2 ∈ X2 and x2 ∈ X2 occurs
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Decentralization Constraints

We need estimator γ : (y1, y2) 7→ (x1, x2) to be decentralized, i.e.,

γ : (y1, y2) 7→
(
γ1(x1), γ

2(x2)
)

So we have

Kyx =

{
1 if γ(y) = x

0 otherwise

=

{
1 if γ1(y1) = x1 and γ2(y2) = x2

0 otherwise

=

{
1 if K1

y1x1
= 1 and K2

y2x2
= 1

0 otherwise

i.e., K is decentralized iff Kyx factorizes as Kyx = K1
y1x1

K2
y2x2
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Minimum Expected Cost

To find the decentralized estimator with minimum expected cost

minimize
∑

y,z

WyzKyz

subject to Kyx = K1
y1x1

K2
y2x2

K i ≥ 0

K i1 = 1

K i
yz ∈ {0, 1} for all y, z

• This is a polynomial program

• In addition to the Boolean and linear constraints, we have bilinear
constraints
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Boolean Constraints

Consider the above problem, but dropping the Boolean constraints.

minimize
∑

y,z

WyzKyz

subject to Kyx = K1
y1x1

K2
y2x2

K i ≥ 0

K i1 = 1

• If there exists a non-Boolean solution, then there exists a Boolean
solution with the same objective value

• Because if we fix K1 and optimize K2, we can find a solution with
K2 Boolean which does not increase the cost. Similarly for K1.
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Lifting

Lifting is a general approach for constructing primal relaxations; the idea is

• Introduce new variables Y which are polynomial in x
This embeds the problem in a higher dimensional space

• Write valid inequalities in the new variables

• The feasible set of the original problem is the projection of the lifted
feasible set
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Example: Minimizing a Polynomial

We’d like to find the minimum of f =
∑6

k=0 akx
k

Pick new variables Y = g(x) where

g(x) =




1 x x2 x3

x x2 x3 x4

x2 x3 x4 x5

x3 x4 x5 x6


 and C =




a0
a1
2

a2
2

a3
2

0 0 a4
2

0 a5
2

a6




Then an equivalent problem is

minimize traceCY

subject to Y � 0

Y11 = 1 Y24 = Y33 Y22 = Y13 Y14 = Y23

Y = g(x)

Dropping the constraint Y = g(x) gives an SDP relaxation of the problem
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The Dual SDP Relaxation

The SDP relaxation has a dual, which is also an SDP.

Example

Suppose f = x6 + 4x2 + 1, then the SDP dual relaxation is

maximize t

subject to




1− t 0 2 + λ2 −λ3

0 −2λ2 λ3 λ1

2 + λ2 λ3 −2λ1 0
−λ3 λ1 0 1


 � 0

this is exactly the condition that f − t be sum of squares
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Lifting for General Polynomial Programs

• When minimizing a polynomial, lifting gives an SDP relaxation of
whose dual is an SOS condition

• When solving a general polynomial program with multiple constraints,
there is a similar lifting

• This gives an SDP, whose feasible set is a relaxation of the feasible
set of the original problem

• The corresponding dual SDP is a Positivstellensatz refutation

• Solving the dual certifies a lower bound on the original problem
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Lifting for Decentralized Estimation

minimize
∑

y,z

WyzKyz

subject to Kyx = K1
y1x1

K2
y2x2

lifted variables

∑

x1

Kyx = K2
y2x2

∑

x2

Kyx = K1
y1x1





new valid inequalities

K i ≥ 0, K i1 = 1

• Relax the constraint Kyx = K1
y1x1

K2
y2x2

.

• The resulting linear program gives a lower bound on the optimal cost
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Lifting for Decentralized Estimation

We solve

minimize
∑

y,z

WyzKyz

subject to
∑

x1

Kyx = K2
y2x2

∑

x2

Kyx = K1
y1x1

K i ≥ 0, K i1 = 1

• If the optimal solution satisfies Kyx = K1
y1x1

K2
y2x2

then it is the optimal
decentralized classifier

• If not, then we need a method for projection
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Example

Suppose the sample space is Ω = {f1, f2, f3, f4} × {g1, g2, g3, g4}

The unnormalized probabilities of (f, g) ∈ Ω are given by

g1 g2 g3 g4

f1 1 6 2 0
f2 0 1 2 4
f3 6 2 0 1
f4 4 0 1 2

• Player 1 measures f , i.e., Y 1 is the set of horizontal strips

and would like to estimate g, i.e, X1 is the set of vertical strips

• Player 2 measures g and would like to estimate f
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Example

Objective: maximize the
expected number of
correct estimates

g1 g2 g3 g4

f1 1 6 2 0
f2 0 1 2 4
f3 6 2 0 1
f4 4 0 1 2

Optimal decision rules are

K1 =




0 1 0 0
0 0 0 1
1 0 0 0
1 0 0 0




Y 1 f1 f2 f3 f4

X1
est g2 g4 g1 g2

K2 =




0 0 1 0
1 0 0 0
0 1 0 0
0 1 0 0




Y 2 g1 g2 g3 g4

X2
est f3 f1 f2 f2

• The optimal is 1.1875

• These are simply the maximum a-posteriori probability classifiers
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Example

Objective: maximize the probability that both estimates are correct

g1 g2 g3 g4

f1 1 6 2 0
f2 0 1 2 4
f3 6 2 0 1
f4 4 0 1 2

Optimal decision rules are

Y 1 f1 f2 f3 f4

X1
est g2 g4 g1 g3

Y 2 g1 g2 g3 g4

X2
est f3 f1 f4 f2

• The relaxation of the lifted problem is tight

• The optimal probability that both estimates are correct is 0.5313

• MAP estimates are not optimal; they achieve 0.5
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Example

Objective: maximize the probability that at least one estimate is correct

g1 g2 g3 g4

f1 1 6 2 0
f2 0 1 2 4
f3 6 2 0 1
f4 4 0 1 2

• The relaxation of the lifted problem is not tight; it gives upper bound
of 0.875

• The following decision rules (constructed by projection) achieve 0.8438

Y 1 f1 f2 f3 f4

X1
est g2 g4 g1 g1

Y 2 g1 g2 g3 g4

X2
est f1 f3 f1 f4

• MAP estimates achieve 0.6875
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Markov Decision Processes

We will now consider a Markov Decision Process where

• Xi(t) is the event that the system is in state i at time t

• Aj(t) is the event that action j is taken at time t

We assume for simplicity that for every stationary policy the chain is irre-
ducible and aperiodic

• Transition probabilities: Aijk = Prob(Xi(t + 1) |Xj(t) ∩Ak(t))

• Mixed policy: Kjk = Prob(Xj(t) ∩Ak(t))

• Cost function: Wjk = cost of action k in state j
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Markov Decision Processes

We would like to solve

minimize
∑

j,k

WjkKjk

subject to
∑

r

Kir =
∑

j,k

AijkKjk

K ≥ 0
∑

j,k

Fjk = 1
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Decentralized Markov Decision Processes

• Two sets of states Xp = {Xp
1 , . . . , X

p
n}

• Two transition matrices Ap
ijk = Prob(Xp

i (t + 1) |Xp
j (t) ∩ Ap

k(t))

• Two controllers Kp
jk = Prob(Xp

j (t) ∩ Ap
k(t))

• Cost function Wj1j2k1k2 = cost of actions k1, k2 in states j1, j2
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Decentralized Markov Decision Processes

minimize
∑

j1,j1,k1,k2

Wj1j1k1k2Kj1j2k1k2

subject to Kj1j2k1k2 = K1
j1k1
K2
j2k2

∑

r

Kp
ir =

∑

j,k

Ap
ijkK

p
jk (1)

Kp ≥ 0 (2)
∑

j,k

Kp
jk = 1 (3)

• Each of constraints (1)–(3) can be multiplied by K3−p to construct a
valid constraint in lifted variables K

• The resulting linear program gives a lower bound on the optimal cost
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Exact Solution

If the solution K to the lifted linear program has the form

Kj1j2k1k2 = K1
j1k1
K2
j2k2

then the controller is an optimal decentralized controller.

This corresponds to the usual rank conditions in e.g., MAXCUT.

Projection

If not, we need to project the solution

• K defines a pdf on X1 ×X2 × U 1 × U 2

• We project by constructing the marginal pdf on Xp × U p
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Example: Medium-Access Control

• Two transmitters, each with a queue that can hold up to 3 packets

• pak = probability that k − 1 packets arrive at queue a

p1 =
[
0.7 0.2 0.05 0.05

]
p2 =

[
0.6 0.3 0.075 0.025

]

• At each time step, each transmitter sees how many packets are in its
queue, and sends some of them; then new packets arrive

• Packets are lost when queues overflow, or when there is a collision,
i.e., both transmit at the same time
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Example: Medium Access

This is a Decentralized Markov Decision Process, where

• Each MDP has 4 states; the no. of packets in the queue

• Each MDP has 4 actions; transmit 0, 1, 2, 3 packets

• State transitions are determined by arrival probabilities and actions

• Cost is total number of packets lost;

Each queue loses all packets sent if there is a collision

Each queue loses packets due to overflows
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Example: Medium Access

Optimal policies for each player are

queue occupancy 0 1 2 3
number sent 0 0 2 3

queue occupancy 0 1 2 3
number sent 0 0 0 3

• Expected number of packets lost per period is 0.2202

• The policy always transmit loses 0.3375 per period
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