Moment matrices, radical ideals and optimization

Revisiting two theorems of Curto and Fialkow

Solution of the truncated complex moment problem for flat data. *Memoirs of the AMS* (119) 568, 1996

The truncated complex K-moment problem. Transactions of the AMS (352), 2000.

Monique Laurent

CWI, Amsterdam

The moment problem

Given a sequence $y = (y_{\alpha})_{\alpha \in \mathbb{N}^n} \in \mathbb{R}^{\mathbb{N}^n}$ Does there exist a nonnegative measure μ on \mathbb{R}^n with *moments:*

$$\int x^{\alpha} d\mu(x) = y_{\alpha} \quad (\alpha \in \mathbb{N}^n)$$

 μ is then called a *representing measure* for y

Variations of the problem:

• The *F*-moment problem: Ask for a measure μ supported by a given subset $F \subseteq \mathbb{R}^n$

• The truncated moment problem: We are given a truncated sequence $y = (y_{\alpha})_{\substack{\alpha \in \mathbb{N}^n \\ |\alpha| = \sum_i \alpha_i \leq t}}$

• The complex moment problem

Moment matrices

$$y = (y_{\alpha})_{\alpha \in \mathbb{N}^n}$$
 $M(y) = (y_{\alpha+\beta})_{\alpha,\beta \in \mathbb{N}^n}$

As usual, identify a polynomial $p(x) = \sum_{\alpha} p_{\alpha} x^{\alpha}$ with its sequence of coefficients $p = (p_{\alpha})_{\alpha}$

Fact: If y has a representing measure, then

$$p^T M(y) p = \int p(x)^2 d\mu(x) \ge 0$$

for any polynomial p(x)

Therefore:

(1)
$$M(y) \succeq 0$$

(2) $supp(\mu) \subseteq \bigcap_{p \in \operatorname{Ker} M(y)} Zeros(p)$
(3) rank $M(y) \leq |supp(\mu)|$

Fact: If μ has a finite support, i.e.,

$$\mu = \sum_{i=1}^{r} \lambda_i \delta_{x_i}$$
 where $\lambda_i > 0, \ x_i \in \mathbb{R}^n$

Dirac measure at x_i

then

$$y = \sum_{i=1}^{r} \lambda_i \zeta_{x_i}$$
$$M(y) = \sum_{i=1}^{r} \lambda_i \zeta_{x_i} \zeta_{x_i}^T$$

setting $\zeta_x := (x^{\alpha})_{\alpha \in \mathbb{N}^n}$

Moment sequences and positive polynomials

 \mathcal{M} = cone of $y = (y_{\alpha})_{\alpha \in \mathbb{N}^n}$ with a representing measure \mathcal{M}^+ = cone of $y = (y_{\alpha})_{\alpha \in \mathbb{N}^n}$ with $M(y) \succeq 0$

 \mathcal{P} = cone of polynomials nonnegative on \mathbb{R}^n Σ = cone of sums of squares of polynomials

$$\mathcal{M} \subseteq \mathcal{M}^{+}, \quad \Sigma \subseteq \mathcal{P}$$
$$y \in \mathcal{M} \stackrel{[\text{Haviland}]}{\iff} y^{T} p \ge 0 \; \forall p \in \mathcal{P}$$
$$y \in \mathcal{M}^{+} \iff y^{T} p \ge 0 \; \forall p \in \Sigma$$
$$\mathcal{M} \qquad \longleftrightarrow \qquad \mathcal{P}$$
$$\begin{array}{c} \mathcal{M} \qquad \longleftrightarrow \qquad \mathcal{P} \\ \text{dual cones} \\ \mathcal{M}^{+} \qquad \longleftrightarrow \qquad \Sigma \end{array}$$

• $n = 1 : \mathcal{P} = \Sigma \Longrightarrow \mathcal{M} = \mathcal{M}^+$ [Hamburger's theorem] • $n \ge 2 : \Sigma \subset \mathcal{P} \Longrightarrow \mathcal{M}^+ \subset \mathcal{M}$ Example: $x_1^2 x_2^2 (x_1^2 + x_2^2 - 1) + 1 \in \mathcal{P} \setminus \Sigma$

Hilbert's theorem: The pairs (n, d) for which every degree d polynomial in n variables nonnegative on \mathbb{R}^n is a sum of squares of polynomials are:

(1)
$$n = 1, d \ge 1$$

(2) $n \ge 1, d = 2$
(3) $n = 2, d = 4$

Positive semidefiniteness of the moment matrix is sometimes sufficient for the existence of a representing measure

Theorem: [Berg, Christensen, Ressel 1976] If $M(y) \succeq 0$ and y is bounded, then y has a (unique) representing measure.

Theorem A: [Curto-Fialkow 1996] If $M(y) \succeq 0$ and M(y) has finite rank r, then y has a (unique) representing measure. Moreover, $supp(\mu) = \bigcap_{p \in \operatorname{Ker} M(y)} Zeros(p)$ has cardinality r.

C-F proof: based on operator theory [spectral theorem + Riesz representation theorem]

New (elementary) proof: use Hilbert's Nullstellensatz and the fact that Ker M(y) is a *radical ideal*.

Proof of: $M(y) \succeq 0$, rank $M(y) = r \Longrightarrow y$ has a *r*-atomic representing measure

Lemma 1: $(fg)^T M(y)h = f^T M(y)(gh)$ for any polynomials f, g, h

Corollary 1: I := Ker M(y) is a radical ideal in $\mathbb{R}[x_1, \ldots, x_n]$.

Lemma 2: Let \mathcal{B} be a set of monomials indexing a maximal nonsingular principal submatrix of M(y). Then, \mathcal{B} is a basis of $\mathbb{R}[x_1, \ldots, x_n]/I$.

Corollary 2: As I is radical, its variety:

$$V(I) = \{ x \in \mathbb{C}^n \mid p(x) = 0 \; \forall p \in I \}$$

has cardinality |V(I)| = r and, by the Nullstellensatz,

$$p \in I \iff p(v) = 0 \ \forall v \in V(I)$$

dim
$$\mathbb{R}[x_1,\ldots,x_n]/I = |V(I)| = r$$

Our objective: Show that y has a representing measure supported by V(I).

Proving that $| V(I) \subseteq \mathbb{R}^n$

Let $p_v \in \mathbb{C}[x_1, \ldots, x_n]$ be interpolation polynomials at $v \in V(I)$; i.e., $p_v(v') = 1$ if v = v' and 0 otherwise. Let Z be the matrix with columns ζ_v $(v \in V(I))$ and let \tilde{Z} be the matrix with rows p_v ($v \in V(I)$).

$$S \quad T \quad T$$

$$Z = \begin{pmatrix} S & T & T \\ A & B & \overline{B} \end{pmatrix}, \quad \tilde{Z} = \begin{matrix} S \\ T \\ T \end{pmatrix} \begin{pmatrix} C \\ D \\ \overline{D} \end{pmatrix}$$

setting $V(I) = S \cup T \cup \overline{T}, S := V(I) \cap \mathbb{R}^n, \overline{T} = \{\overline{v} \mid v \in T\}$

- **Lemma 3:** $M(y) = Z \operatorname{diag}(\tilde{Z}y)Z^T$
- **Corollary 3:** $M(y) \succeq 0 \Longrightarrow T = \emptyset$

Proof:

$$M(y) = \begin{pmatrix} A & B & \overline{B} \\ & B & \\ & & \overline{b} \end{pmatrix} \begin{pmatrix} a & & \\ & b & \\ & & \overline{b} \end{pmatrix} \begin{pmatrix} & A^T & \\ & B^T & \\ & \overline{B}^T & \\ & & \overline{B}^T \end{pmatrix}$$

$$= \underbrace{A \operatorname{diag}(a) A^{T}}_{A_{+}A_{+}^{T} - A_{-}A_{-}^{T}} + \underbrace{B \operatorname{diag}(b) B^{T}}_{EE^{T} - FF^{T}} + \underbrace{B \operatorname{diag}(b) B^{T}}_{EE^{T} - FF^{T}}$$

$$= (A_{+}A_{+}^{T} + EE^{T}) - (A_{-}A_{-}^{T} + FF^{T})$$

As A_+, A_-, E, F are real matrices, $|S| + 2|T| = \operatorname{rank} M(y) \leq \operatorname{rank}(A_+A_+^T + EE^T)$ $\leq |\{v \in S \mid a_v > 0\}| + |\{v \in T \mid b_v \neq 0\}|$ $\leq |S| + |T|$

Lemma 4: $M(y) = \sum_{v \in V} [p_v^T M(y) p_v] \zeta_v \zeta_v^T$

Proof: Denote by N the RHS matrix.

As $\{p_v \mid v \in V\}$ is a basis of $\mathbb{R}[x_1, \ldots, x_n]/I$, it suffices to verify that

$$p_v^T M(y) p_{v'} = p_v^T N p_{v'}$$
 for all $v, v' \in V$.

- Obvious if v = v'.
- If $v \neq v'$, $p_v^T N p_{v'} = 0$ and $p_v^T M(y) p_{v'} = 1^T M(y) (p_v p_{v'}) = 0$, since $p_v p_{v'} \in I$.

Corollary 4: The measure $\mu := \sum_{v \in V} [p_v^T M(y) p_v] \delta_v$ is a representing measure for y.

The Flat Extension Theorem for truncated sequences

Theorem B: [Curto-Fialkow 1996] Let $y = (y_{\alpha})_{|\alpha| \le 2t}$ such that $M_t(y) \succeq 0$ and rank $M_t(y) = \operatorname{rank} M_{t-1}(y)$ $[M_t(y) \text{ is a flat extension of } M_{t-1}(y)].$

Then, $M_t(y)$ has a flat extension $M_{t+1}(y)$.

$$\implies M_t(y) \text{ has a flat extension } M(y) \succeq 0$$
$$\implies y \text{ has a representing measure}$$

Application: [Curto-Fialkow 1998]

A truncated sequence $y = (y_{\alpha})_{|\alpha| \le 2t}$ has a representing measure with finite support

 $\iff M_t(y) \succeq 0$ has a positive extension $M_{t+k}(y)$ (for some $k \ge 1$) which in turn has a flat extension $M_{t+k+1}(y)$.

The *F*-moment problem

When does $y = (y_{\alpha})_{\alpha \in \mathbb{N}^n}$ have a representing measure supported by the basic closed semi-algebraic set:

$$F = \{ x \in \mathbb{R}^n \mid h_1(x) \ge 0, \dots, h_m(x) \ge 0 \}?$$

Necessary conditions: $M(y) \succeq 0, M(h_j y) \succeq 0 \ (\forall j)$

The conditions are sufficient when F is compact and satisfies Putinar's condition.

In the truncated case, the conditions are sufficient when some flat extension condition is satisfied.

Theorem C: [Curto-Fialkow 2000] Set $d := \max_j \lceil \deg(h_j)/2 \rceil$ and let $y = (y_\alpha)_{|\alpha| \le 2t}$. If $M_t(y) \succeq 0$ has a flat extension $M_{t+d}(y)$ and $M_t(h_j y) \succeq 0$ $(\forall j)$, then y has a representing measure supported by F.

Proof: By Theorems A + B, y has a representing measure supported by V(I).

Remains to show that $V(I) \subseteq F$.

For this, choose interpolation polynomials p_v at $v \in V(I)$ having degree at most t. Then,

$$0 \le p_v^T M_t(h_j y) p_v = \int p_v(x)^2 h_j(x) d\mu(x)$$
$$\implies h_j(v) \ge 0 \quad \forall j, \quad \text{i.e., } v \in F$$

Application to optimization

$$p^* = \min p(x) \text{ s.t. } \quad \overbrace{h_1(x) \ge 0, \dots, h_m(x) \ge 0}^{x \in F}$$

= min $p^T y$ s.t. y has a repr. measure supported by F
= max ρ s.t. $p(x) - \rho \ge 0$ on F .

Two dual bounds: $\rho_t^* \le p_t^* \le p^*$

$$p_t^* := \min p^T y \text{ s.t. } M_t(y) \succeq 0, \ M_{t-d_j}(h_j y) \succeq 0 \ \forall j, y_0 = 1$$

$$\rho_t^* := \max \rho \text{ s.t. } p(x) - \rho = u_0 + \sum_j u_j h_j$$

$$u_0, u_j \in \Sigma, \ \deg(u_0), \deg(u_j h_j) \le 2t$$

• [Lasserre 2001] Asymptotic convergence to p^* when F is compact and satisfies Putinar's condition

• [Las 01][Lau 02] **Finite convergence** in the presence of equations defining a radical zero-dimensional ideal.

Stopping criterion: [Henrion-Lasserre 2003] Let y be an optimum solution to p_t^* . If rank $M_t(y) = \operatorname{rank} M_{t-d}(y)$, then $p_t^* = p^*$.

Proof: By Theorem C, y has a representing measure $\mu = \sum_{v \in V(I)} \lambda_v \delta_v \text{ supported by } V(I) \subseteq F.$ Then, $p_t^* = p^T y = \sum_v \lambda_v p(v) \ge p^* \Longrightarrow p_t^* = p^*.$

Extracting a global minimizer: Compute the points in V(I), which are global minimizers of p(x) over F.

Alternative elementary proof for Theorem A using the spectral theorem for commutative symmetric matrices

(inspired by [Freedman-Lovász-Schrijver]) Assume $M(y) \succeq 0$, rank M(y) = r, set I = Ker M(y).

• Equip the algebra $\mathcal{A} := \mathbb{R}[x_1, \dots, x_n]/I$ with the inner product:

$$\langle p,q\rangle = p^T M(y)q$$

• W.r.t. an orthomal basis, the *multiplication operator*:

$$L_f: \mathcal{A} \to \mathcal{A}$$
$$g \mapsto fg$$

has a symmetric matrix M_f

• The matrices M_{x_1}, \ldots, M_{x_n} pairwise commute \implies They have a common system $\{p_1, \ldots, p_r\}$ of *real* eigenvectors, forming a basis of \mathcal{A} .

•
$$p_i p_j = 0 \ (i \neq j), \ p_i^2 = p_i \ [\text{system of idempotents of } \mathcal{A}]$$

 $\langle 1, p_i \rangle = \langle 1, p_i^2 \rangle = \langle p_i, p_i \rangle \ge 0$
• Write $x_i = \sum_{\ell=1}^r \beta_\ell^{(i)} p_\ell$ and set $z_\ell := (\beta_\ell^{(1)}, \dots, \beta_\ell^{(n)})$. Then,
 $x_1^{\alpha_1} \cdots x_n^{\alpha_n} = \sum_{\ell=1}^r (\beta_\ell^{(1)})^{\alpha_1} \cdots (\beta_\ell^{(n)})^{\alpha_n} p_\ell = \sum_{\ell=1}^r z_\ell^{\alpha} p_\ell$

Therefore,

$$y_{\alpha} = \langle 1, x^{\alpha} \rangle = \sum_{\ell=1}^{r} \langle 1, p_{\ell} \rangle z_{\ell}^{\alpha}$$

Hence, $\mu := \sum_{\ell=1}^{r} \langle 1, p_{\ell} \rangle \delta_{z_{\ell}}$ is a representing measure for y.

Some bibliography

C. Berg, J.P.R. Christensen, and P. Ressel. Positive definite functions on Abelian semigroups. *Math. Ann.* **223** (1976), 253–272.

R.E. Curto and L.A. Fialkow. Solution of the truncated complex moment problem for flat data. *Mem. Amer. Math. Soc.* vol. 568, Amer. Math. Soc., Providence, RI, 1996.

R.E. Curto and L.A. Fialkow. Flat extensions of positive moment matrices: recursively generated relations. *Mem. Amer. Math. Soc.* vol. 648, Amer. Math. Soc., Providence, RI, 1998.

R.E. Curto and L.A. Fialkow. The truncated complex K-moment problem. Trans. Amer. Math. Soc. **352** (2000), 2825–2855.

M. Freedman, L. Lovász, and A. Schrijver. Reflection positivity, rank connectivity and homomorphism of graphs. Preprint, 2004.

D. Henrion and J.-B. Lasserre. Detecting global optimality and extracting solutions in GloptiPoly. Preprint, 2003.

J.B. Lasserre. Global optimization with polynomials and the problem of moments. *SIAM J. Optim.* **11** (2001), 796–817.

J.B. Lasserre. Polynomials nonnegative on a grid and discrete representations. *Trans. Amer. Math. Soc.* **354** (2001), 631–649.

M. Laurent. Revisiting two theorems of Curto and Fialkow on moment matrices. Preprint, January 2004. To appear in the Proceedings of the AMS.

M. Laurent. Semidefinite representations for finite varieties. Preprint, 2002.