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The moment problem

Given a sequence y = (yα)α∈Nn ∈ R
N

n

Does there exist a nonnegative measure µ on R
n with

moments:

∫
xαdµ(x) = yα (α ∈ N

n)

µ is then called a representing measure for y

Variations of the problem:

• The F -moment problem: Ask for a measure µ sup-
ported by a given subset F ⊆ R

n

• The truncated moment problem: We are given a
truncated sequence y = (yα) α∈Nn

|α|=∑
i αi≤t

• The complex moment problem



Moment matrices

y = (yα)α∈Nn M(y) = (yα+β)α,β∈Nn

As usual, identify a polynomial p(x) =
∑
α

pαx
α with its

sequence of coefficients p = (pα)α

Fact: If y has a representing measure, then

pTM(y)p =
∫
p(x)2dµ(x) ≥ 0

for any polynomial p(x)

Therefore:
(1) M(y) � 0
(2) supp(µ) ⊆ ⋂

p∈KerM(y)
Zeros(p)

(3) rank M(y) ≤ |supp(µ)|

Fact: If µ has a finite support, i.e.,

µ =
r∑

i=1
λiδxi

where λi > 0, xi ∈ R
n

Dirac measure at xi

then
y =

r∑
i=1

λiζxi

M(y) =
r∑

i=1
λiζxi

ζT
xi

setting ζx := (xα)α∈Nn



Moment sequences and positive polynomials

M= cone of y = (yα)α∈Nn with a representing measure
M+= cone of y = (yα)α∈Nn with M(y) � 0

P= cone of polynomials nonnegative on R
n

Σ= cone of sums of squares of polynomials

M⊆M+, Σ ⊆ P

y ∈M [Haviland]⇐⇒ yTp ≥ 0 ∀p ∈ P

y ∈M+ ⇐⇒ yTp ≥ 0 ∀p ∈ Σ

M ←→ P
dual cones

M+ ←→ Σ

• n = 1 : P = Σ =⇒M =M+ [Hamburger’s theorem]

• n ≥ 2 : Σ ⊂ P =⇒M+ ⊂M
Example: x2

1x
2
2(x

2
1 + x2

2 − 1) + 1 ∈ P \ Σ

Hilbert’s theorem: The pairs (n, d) for which every
degree d polynomial in n variables nonnegative on R

n is a
sum of squares of polynomials are:
(1) n = 1, d ≥ 1
(2) n ≥ 1, d = 2
(3) n = 2, d = 4



Positive semidefiniteness of the moment matrix
is sometimes sufficient for the existence of a

representing measure

Theorem: [Berg, Christensen, Ressel 1976]
If M(y) � 0 and y is bounded, then y has a (unique)
representing measure.

Theorem A: [Curto-Fialkow 1996]
If M(y) � 0 and M(y) has finite rank r, then y has a
(unique) representing measure.

Moreover, supp(µ) =
⋂

p∈KerM(y)
Zeros(p) has cardinality r.

C-F proof: based on operator theory [spectral theorem
+ Riesz representation theorem]

New (elementary) proof: use Hilbert’s Nullstellensatz
and the fact that Ker M(y) is a radical ideal.



Proof of: M(y) � 0, rank M(y) = r =⇒
y has a r-atomic representing measure

Lemma 1: (fg)TM(y)h = fTM(y)(gh) for any polyno-
mials f, g, h

Corollary 1: I := Ker M(y) is a radical ideal in R[x1, . . . , xn].

Lemma 2: Let B be a set of monomials indexing a max-
imal nonsingular principal submatrix of M(y). Then, B is
a basis of R[x1, . . . , xn]/I .

Corollary 2: As I is radical, its variety:

V (I) = {x ∈ C
n | p(x) = 0 ∀p ∈ I}

has cardinality |V (I)| = r and, by the Nullstellensatz,

p ∈ I ⇐⇒ p(v) = 0 ∀v ∈ V (I)

dim R[x1, . . . , xn]/I = |V (I)| = r

Our objective: Show that y has a representing measure
supported by V (I).



Proving that V (I) ⊆ R
n

Let pv ∈ C[x1, . . . , xn] be interpolation polynomials at
v ∈ V (I); i.e., pv(v

′) = 1 if v = v′ and 0 otherwise.

Let Z be the matrix with columns ζv (v ∈ V (I)) and let
Z̃ be the matrix with rows pv (v ∈ V (I)).

Z =

⎛
⎜⎜⎜⎜⎜⎝

S T T

A B B

⎞
⎟⎟⎟⎟⎟⎠, Z̃ =

⎛
⎜⎜⎜⎜⎜⎝

S C

T D

T D

⎞
⎟⎟⎟⎟⎟⎠

setting V (I) = S ∪ T ∪ T , S := V (I) ∩ R
n, T = {v | v ∈ T}

Lemma 3: M(y) = Zdiag(Z̃y)ZT

Corollary 3: M(y) � 0 =⇒ T = ∅
Proof:

M(y) =

⎛
⎜⎜⎜⎜⎝ A B B

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

a

b

b

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

AT

BT

B
T

⎞
⎟⎟⎟⎟⎠

= Adiag(a)AT

︸ ︷︷ ︸
A+AT

+−A−AT−

+ Bdiag(b)BT + Bdiag(b)BT
︸ ︷︷ ︸

EET−FFT

= (A+AT
+ + EET )− (A−AT

− + FFT )

As A+, A−, E, F are real matrices,

|S| + 2|T | = rank M(y) ≤ rank(A+AT
+ + EET )

≤ |{v ∈ S | av > 0}| + |{v ∈ T | bv �= 0}|
≤ |S| + |T |



Lemma 4: M(y) =
∑

v∈V
[pT

v M(y)pv] ζvζ
T
v

Proof: Denote by N the RHS matrix.
As {pv | v ∈ V } is a basis of R[x1, . . . , xn]/I , it suffices to
verify that

pT
v M(y)pv′ = pT

v Npv′ for all v, v′ ∈ V.

• Obvious if v = v′.
• If v �= v′, pT

v Npv′ = 0 and pT
v M(y)pv′ = 1TM(y)(pvpv′) =

0, since pvpv′ ∈ I .

Corollary 4: The measure µ :=
∑

v∈V
[pT

v M(y)pv]δv is a

representing measure for y.



The Flat Extension Theorem for truncated
sequences

Theorem B: [Curto-Fialkow 1996]
Let y = (yα)|α|≤2t such that Mt(y) � 0 and

rank Mt(y) = rank Mt−1(y)

[Mt(y) is a flat extension of Mt−1(y)].
Then, Mt(y) has a flat extension Mt+1(y).

=⇒Mt(y) has a flat extension M(y) � 0

=⇒ y has a representing measure

Application: [Curto-Fialkow 1998]
A truncated sequence y = (yα)|α|≤2t has a representing
measure with finite support
⇐⇒Mt(y) � 0 has a positive extension Mt+k(y) (for some
k ≥ 1) which in turn has a flat extension Mt+k+1(y).



The F -moment problem

When does y = (yα)α∈Nn have a representing measure sup-
ported by the basic closed semi-algebraic set:

F = {x ∈ R
n | h1(x) ≥ 0, . . . , hm(x) ≥ 0}?

Necessary conditions: M(y) � 0, M(hjy) � 0 (∀j)

The conditions are sufficient when F is compact and
satisfies Putinar’s condition.
In the truncated case, the conditions are sufficient when
some flat extension condition is satisfied.

Theorem C: [Curto-Fialkow 2000]
Set d := maxj�deg(hj)/2� and let y = (yα)|α|≤2t.
If Mt(y) � 0 has a flat extension Mt+d(y) and Mt(hjy) � 0
(∀j), then y has a representing measure supported by F .

Proof: By Theorems A + B, y has a representing measure
supported by V (I).

Remains to show that V (I) ⊆ F .

For this, choose interpolation polynomials pv at v ∈ V (I)
having degree at most t. Then,

0 ≤ pT
v Mt(hjy)pv =

∫
pv(x)2hj(x)dµ(x)

=⇒ hj(v) ≥ 0 ∀j, i.e., v ∈ F



Application to optimization

p∗ = min p(x) s.t.
x∈F︷ ︸︸ ︷

h1(x) ≥ 0, . . . , hm(x) ≥ 0
= min pTy s.t. y has a repr. measure supported by F
= max ρ s.t. p(x)− ρ ≥ 0 on F.

Two dual bounds: ρ∗t ≤ p∗t ≤ p∗

p∗t := min pTy s.t. Mt(y) � 0, Mt−dj
(hjy) � 0 ∀j, y0 = 1

ρ∗t := max ρ s.t. p(x)− ρ = u0 +
∑
j

ujhj

u0, uj ∈ Σ, deg(u0), deg(ujhj) ≤ 2t

• [Lasserre 2001] Asymptotic convergence to p∗ when
F is compact and satisfies Putinar’s condition
• [Las 01][Lau 02] Finite convergence in the presence
of equations defining a radical zero-dimensional ideal.

Stopping criterion: [Henrion-Lasserre 2003]
Let y be an optimum solution to p∗t .
If rank Mt(y) = rank Mt−d(y), then p∗t = p∗.

Proof: By Theorem C, y has a representing measure
µ =

∑
v∈V (I)

λvδv supported by V (I) ⊆ F .

Then, p∗t = pTy =
∑
v

λvp(v) ≥ p∗ =⇒ p∗t = p∗.

Extracting a global minimizer: Compute the points
in V (I), which are global minimizers of p(x) over F .



Alternative elementary proof for Theorem A
using the spectral theorem for commutative

symmetric matrices
(inspired by [Freedman-Lovász-Schrijver])

Assume M(y) � 0, rank M(y) = r, set I = Ker M(y).

• Equip the algebra A := R[x1, . . . , xn]/I with the inner
product:

〈p, q〉 = pTM(y)q

• W.r.t. an orthomal basis, the multiplication operator:

Lf : A → A
g �→ fg

has a symmetric matrix Mf

• The matrices Mx1, . . . ,Mxn pairwise commute
=⇒ They have a common system {p1, . . . , pr} of real eigen-
vectors, forming a basis of A.

• pipj = 0 (i �= j), p2
i = pi [system of idempotents of A]

〈1, pi〉 = 〈1, p2
i 〉 = 〈pi, pi〉 ≥ 0

•Write xi =
r∑

�=1
β

(i)
� p� and set z� := (β

(1)
� , . . . , β

(n)
� ). Then,

xα1
1 · · ·xαn

n =
r∑

�=1
(β

(1)
� )α1 · · · (β(n)

� )αnp� =
r∑

�=1
zα
� p�

Therefore,

yα = 〈1, xα〉 =
r∑

�=1
〈1, p�〉zα

�

Hence, µ :=
r∑

�=1
〈1, p�〉δz�

is a representing measure for y.
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