

Activity Patterns in Purely Excitatory Networks

Jonathan Rubin Department of Mathematics, University of Pittsburgh rubin@math.pitt.edu

Mathematical Neuroscience Workshop - MSRI - March 15, 2004

MAIN POINTS:

- spatially localized, temporally sustained activity (bumps) can occur in purely excitatory networks
- the go curve provides a useful construct for understanding the underlying mechanism and properties

Bumps: what are they and why do we care?

- spatially localized, temporally sustained activity
- which cells are active depends on some external feature
- activity persists without persistent stimulus
- seen in visual system, head direction system, and prefrontal cortex (working memory): stimulus shown, subject must later recall position; localized group of cells fire until recall

e.g. Wilson/Cowan/Amari: $u_t(x,t) = h - \sigma u(x,t) + \int_{-\infty}^{\infty} \! w(x-y) f(u(y,t)) \, dy$

Bumps in neuroscience models with Mexican hat

- Guo and Chow, 2003
- Coombes, Lord, and Owen, 2003
- Renart, Song, and Wang, 2003
- Laing and Troy, 2002 $\&$ 2003
- Laing, Troy, Gutkin, and Ermentrout, 2002
- Gutkin, Laing, Colby, Chow, and Ermentrout, 2001
- Laing and Chow, 2001
- Pinto and Ermentrout, 2001
- Werner and Richter, 2001
- Compte, Brunel, Goldman-Rakic, and Wang, 2000
- Taylor, 1999
- Camperi and Wang, 1998
- Hansel and Sompolinsky, 1998
- Amit and Brunel, 1997
- Kishimoto and Amari, 1979
- Amari, 1977
- Wilson and Cowan, 1972 $\&$ 1973

2. Rubin, Terman, and Chow, JCNS, 2001: no E-E; PIR

3. Rubin and Troy, SIAP, to appear:

off-center coupling

4. One-layer network with purely excitatory coupling [Drover/Ermentrout, SIAP, 2003; Rubin/Bose, 2004]:

Equations

$$
\begin{cases}\nv'_i = f(v_i, w_i) - \bar{g}_{syn}[v_i - E_{syn}]\left[c_i + \sum_{j=1}^{j=3} c_j[s_{i-j} + s_{i+j}]\right] \\
w'_i = [w_{\infty}(v_i) - w_i]/\tau_w(v_i) \\
s'_i = \alpha[1 - s_i]H(v_i - v_\theta) - \beta s_i \text{ (on a ring)}\n\end{cases}
$$

Geometry - θ model:

$$
\begin{cases}\n\theta'_i = 1 - \cos \theta_i + (1 + \cos \theta_i)(b + g_{i_{syn}}) \\
g_{i_{syn}} = \bar{g}_{syn} \Big[c_0 s_i + \sum_{j=1}^{j=3} c_j (s_{i-j} + s_{i+j}) \Big] \\
s'_j = \alpha [1 - s_j] e^{-\gamma (1 + \cos \theta_j)} - \beta s_j, \, j = i - 3, \dots, i + 3 \\
\text{with } \alpha, \gamma \text{ large}\n\end{cases}
$$

synaptic decay dynamics:

$$
\theta' = f(\theta, g_{i_{syn}}),\\ g'_{i_{syn}} = -\beta g_{i_{syn}}
$$

Geometry - θ model - (2):

synaptic decay dynamics: $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $\boldsymbol{\theta}$ $\overline{\mathbf{I}}$ $\,=\,f(\theta,g_{i_{syn}}),$ g $\overline{\mathbf{I}}$ $\dot{i_{syn}}=-\beta g_{\dot{i_{syn}}}$

main ingredients:

- threshold of synaptic decay dynamics determines result of stimulation
- delay to firing depends on proximity to threshold
- variable delays desynchronize and stop spread

Geometry - Morris-Lecar with $w' = 0$:

$$
\begin{cases}\nv' = f(v, w) - g_{i_{syn}}(v - E_{syn}) \\
w' = 0 \\
s'_i = \alpha[1 - s_i]H(v_i - v_\theta) - \beta s_i\n\end{cases}
$$

decay dynamics: replace $s_{\bm i}$ -equations with g $\overline{\mathbf{I}}$ $i_{syn}^{\prime}=-\beta g_{i_{syn}}^{\prime}$

Geometry - Morris-Lecar full system:

$$
\begin{cases}\nv' = f(v, w) - g_{i_{syn}}(v - E_{syn}) \\
w' = g(v, w) \\
s'_i = \alpha[1 - s_i]H(v_i - v_\theta) - \beta s_i\n\end{cases}
$$

decay again: replace s_i -equations with g $\overline{\mathbf{I}}$ $i_{syn}^{\prime}=-\beta g_{i_{syn}}^{\prime}$

note: can still project into $(v, g_{i_{syn}})$ phase plane!

Analysis: who jumps?

- suppose that cell i gets a synaptic input from cell j
- \bullet check the projected $(v, g_{i_{syn}})$ phase plane for cell i at the moment cell j falls down through v_{thresh}
- \bullet position of cell *i* relative to go curve determines recruitment

Implications - identify recruitment

- also, faster synaptic decay hurts in two ways...
- ...and bump size is non-unique and nonrobust

Bump formation:

- recruitment as above; initial synchrony helps
	- −− start near same rest state
	- −− common input overrules synaptic coupling
- localization via desynchronization after shock (delayed escape from go surface)
- sustainment via self-coupling (not sufficient!) and asynchrony

Synaptic depression: Bose et al., SIAP, 2001: s $\mathcal{O}^{\prime}=\alpha[d-s]H(v-v_{thresh})-\beta s$ $d' = ([1-d]/\tau_\gamma) H(v_{thresh}-v) - (d/\tau_\eta) H(v-v_{thresh})$ $\mathbf O$ 0.5 v

Results: filtering and toggling

Toggling:

Discussion

- bumps can exist in purely excitatory networks inhibition is not necessary
	- initiated by transient input
	- go curve forms recruitment threshold
	- localized by desychronization (Type I dynamics)
	- sustained by self-coupling (or e.g. I_{CaL}) and desynchronization
- bump details are sensitive to parameters
- synaptic depression \Rightarrow band-pass filter, toggling
- OPEN: rigorous analysis, role of short-term spike frequency changes, bump mechanism for Type II (D/E)
- IDEA: go curve/surface is useful for predicting the impact of transient inputs
- IDEA: intrinsic dynamics can be important, and excitatory networks can do interesting things
- IDEA: go curve/surface is useful for predicting the impact of transient inputs
- IDEA: intrinsic dynamics can be important, and excitatory networks can do interesting things