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Program

Biophysical Description

(Spiking models)
B(0) - B(t)
A
Restrict f: B—>R Lift f':R->B
\j
R(0) " RO

Reduced Description . .
(Rate Models) Time Evolution
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Localized persistent activity

-

Short term working memory is correlated to persistent
states of neural activity

Possible analogue in neural network equations are
localized self-sustaining ‘pulse’ or ‘oump’ solutions.

Show existence and stability of pulses and find
properties

Compare and contrast bumps in rate models to spiking
models

|
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Integrate-and-Fire Network

-

dz
0 —]—vz+2wwsj , sj(t) = Bexp(—pt)

Neuron fires and resets when v reaches threshold



Integrate-and-Fire Network
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dz
0 —]—vz+2wwsj , sj(t) = Bexp(—pt)

Neuron fires and resets when v reaches threshold
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Localized persistent state (pulse)

f Simulation T
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Mean field approach
f # Neuronal dynamics if neuron last fired at ¢ = s T
vi(t) = I(1 — e 79 4 (t) — u(s)e” )

with neuronal input

u;i(t) = Z Z wijE(t—té)

[espikes jEneurons

where

o |
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-

#® Can rewrite as
Z Wi / e(s)A;(t — s)ds

where A;(t) = >, 0(t — ') is the “activity" of neuron j

# u; Is almost constant if input is uncorrelated (or if
synapses are slow)

# Average of A; is the firing rate of neuron i given u;, I.e.
Ai = fluil

o |
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-

o For integrate-and-fire neuron:

f[u]zl/ln[ ftu ]

I +u—1

F[z]

® f[u] is the ‘gain function’

o |
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-

B

# This gives the mean field equations

wp =Y wiiflugl, A= flug

-

# Matched simulations of integrate-and-fire network (with

Carlo Laing)
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Dynamics

-

® Suppose inputs are slowly varying: A;(t) ~ flu;(t)],

wlt) = 3wy / (t — $) flus()]ds

® |fe(t) ~exp(—t/7)/7 then

du; (t
T ud?f ) = —U; + zj:wwf[uj]

(..., Wilson-Cowan, Cohen-Grossberg, Amari, Ermentrout,...)

# Breaks down if not slowly varying (Gerstner, van Hemmen)
—Spike response formalism

o |
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o Coarse-grain in space

ou(x,t)

P = —ula )+ [ wle - ) futo. Oy

# Stationary solutions obey
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Constant stationary solutions

)

» Suppose [,w(x — y)dy = w’, constant solutions u; = u
satisfy u” = w" fu']

//
/s uT

# Multiple stationary solutions possible (analogue of

L memory) J
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Localized pulse solutions

B o
wmziéww—yﬁw@ww

o Spatially dependent weights
e.g. ‘Mexican Hat’ ‘Wizard Hat’

w w

~ g

(@) = A —Be ' w(z) = Aokl petiel
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o Consider ‘jump linear’ gain function to represent
integrate-and-fire gain

flul = [a(u —ur) + B] H(u — ur)
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-

# Find pulse solutions of the form
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Project to Low Dimension

o N

# Strategy is to transform to ODE and solve
o Fourier transform deconvolves integral operator
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® For w(z) = Ae~?l — Bebll

 2aA(s* +b*) — 20B(s* + a?)
B (52 + a?)(s2 + b?)

Flw]
# Rearrange to obtain

(s*+a*)(s°+b°) Flu] = 2ab(Ab— Ba)F[f]+2(aA—bB)s*F[f]

o |
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® |Inverse transform
u"" — (0 + 0*)u" + a’b’u = 2ab(bA — aB) f[u]
+ Z(aA bB) { flu(zr)] [0'(x — x7) + &' (x + a7))]
fTu(zr)|u (@ ) [ (. —xr) + d(z + 27)]
()W) + f )], )

® Piecewise linear 4th order ODE

# Choice of coupling allows for projection to low
dimension

o |
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-

Pulse solution must satisfy:

1. Boundary conditions
u(x) > up, —rp < x < TT
u'(0) =u"(0) =0
u(+oo) = 0 and derivatives

2. Matching conditions at = = zp

S
3
I

u(ry) = ur

= u/(a7)

= u'(zp) +2(aA — bB) flu(z7)]

= " (x7) + 2(aA — bB) f'[u(zy) |/ (27

o |
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® Solutions have the form

[:u(x)=Ce** +e )+ D" 4+e %)+ Uy

IT: wu(z)=Fe % 4 Fe t®

where

1/2

R+ VA
9

2(6 — aur)(bA — aB)
ab — a(bA —aB)

Up =

W4+ =

R=a*+b*+2a(aA —bB), A =[R?—4a®b* + 8aab(bA — aB)]
# Solution structure changes as w+ changes

o |

Localized Pulses in Neural Networks — p.20/48



Matching Conditions
-

Ee™%T 4 Fe™b2T —

C(€w+xT _I_e—w+xT) _'_D(ew_xT _|_e—w_xT) + UO — Ee—a:cT _|_F€—be

wyC(e¥+5T — e7WH+IT) L y_D(e¥=%T — ¢ ¥=2T) = —qFe %7 — pFe 0T
wiC(ew”T + 79T 4 2 D(e¥T 4 e7W-IT) = g2 Fe” %UT 4 p2 Fe 0T
— 26(aA — bB)

wiC’(ew+xT — 7T 4 3 D(e¥-TT — eTW-TT) =

—a*Be™ 9T — ¥ Fe T £ 20(aA — bB)[aEe T 4 bFe 0T

# Pulse exists if solution can be found (5 eg’'ns, 5
unknowns)

# Solve ‘linear system’ for coefficients C, D, E/, F and
obtain existence condition ®(z7) = ur

~» Simple for a = 0, unwieldy otherwise |
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Amari’s Solution: oo = (

o N

® f[u] = Hlu — up] with w(z) = Ae~?? — Bebl2
» Existence Condition (ur = [*7 w(z — y)dy)

B
o (1 L 6—2b$T) — UT

# Two pulse solutions (small and large)
# Only large one is linearly stable J
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#® Exampleswith A=1,B=0.65,a=0.32,b=0.18,3 =1

a=0.1

Nonzero o

-



l/tT *****************************************
; m 5 Ar
u u
BN ’ 17 0\ iiiiii
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Continuation

o N

# Small bump and large bump annihilate in saddle node

height X,
6 -
5 L
] L
4 L
3 L
05 | 51
] L
0 ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘
0.85 0.95 A 1.05 1.15 085 0.9 0.95 A 1 1.05 1.1
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Height goes to infinity at critical «

Height Width
6 | 1
4 L
0.5 +

2 4<
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0 o
0 o o 2 0 o o 2
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Critical ur (A = a)
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firing rate

Maximum

max
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Dimple and Double Pulses




Transitions in ur (« = 0.6187, A =28, a=26,B=b=0=1)

D / -

- |

Single-pulse s Single-pulse b
L3
s b

N NN
| AV ~N B

Pulse at transition P Pulse at P;
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A=28a=26,a=09987 8=1

0.22
P P
uT
0.06 /
X P
Uy | ‘ X

o small single pulse

e big single pulse

> dimple pulse

x not a valid solution

At P, dimple pulse splits into a double pulse.

|
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Linear Stability
B -

w=—u+ [ wle =y fluty, O)dy

— 00

o Letu(z,t) = ug(x) + v(z)e and linearize

(@) = we—an) 2w eren) o [ ey
where ¢ > 0 is the slope of up(z) at —x-
#® Re) > 0 indicates instability

# Consider wizard hat coupling and solve eigenvalue
problem

o |
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Properties of Eigenvalue Problem
- -
(1+ ) = L(v)
® )\is real

# )\ = 0is an eigenvalue (translational invariance)
# ) is bounded above by ),

1
A < QwO(E +axp) — 1= N

where wy is the maximum of |w(z)| on |[—x7, z7]
# Eigenfunction v(x) is either even or odd.
® [(v)is a compact operator
L # Essential spectrum is in the left half plane

|
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Eigenvalues

-

To evaluate \ explicitly, transform to ODE and solve

Matching conditions across +xz form linear system of
coefficients M(\) =0

Eigenvalues must satisfy DetM(\) = 0

If there exists 0 < A < )\, then the standing pulse is
unstable

Otherwise pulse is stable

|
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Stability Results
-

# Small pulse is unstable, large pulse is stable
# Can have coexisting stable pulses

# Dimple pulses can be stable and coexist with large
pulses

# No stable double pulses for Amari case were found

|

Localized Pulses in Neural Networks — p.36/48



Compare to spiking models

-

-

# Search parameter space using jump-linear gain rate
model matched to integrate-and-fire gain rate model
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Gaussian weight function: 5 = 0.3
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Dimple Bumps (but not really)
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Multistability
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Double Bumps 1 =771 4=28a0=265
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Discreteness and Marginal Stability

o N

# Discreteness can stabilize marginal modes
# Consider pulse of width b in Amari equation

u(zr) = ¢(x,b), ur = ¢(b,b)

b
—b

xxxxxxxxxxx

k : Dimple case
7 A A=18a =16 upr =0.124
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# Discretization gives stability to marginal modes since
neurons adjacent to edge are below threshold by
Ox¢(x = b,b)dx ~ (A — 1)dx

® Since ¢(b,—b) — ur ~ 0.001, to eliminate discreteness
effect need adjacent neuron to be above threshold. i.e.
(A —1)dz < 0.001

® Thus dz < 0.00125 or need > 16,000 neurons in J
simulation
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