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Program

Biophysical
(Spiking models)

Description

Reduced Description
(Rate Models) Time Evolution

B(0) B(t)

R(t)R(0)

Restrict f: B−>R Lift −1f  : R−>B  
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Localized persistent activity

Short term working memory is correlated to persistent
states of neural activity

Possible analogue in neural network equations are
localized self-sustaining ‘pulse’ or ‘bump’ solutions.

Show existence and stability of pulses and find
properties

Compare and contrast bumps in rate models to spiking
models
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Integrate-and-Fire Network

dvi

dt
= I − vi +

∑

j

wijsj(t), sj(t) = β exp(−βt)

Neuron fires and resets when v reaches threshold
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Localized persistent state (pulse)

Simulation

Oscillator Number
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Localized persistent state (pulse)
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Mean field approach
Neuronal dynamics if neuron last fired at t = s

vi(t) = I(1 − e−(t−s)) + ui(t) − u(s)e−(t−s)

with neuronal input

ui(t) =
∑

l∈spikes

∑

j∈neurons

wijε(t − tlj)

where

ε(t) = β
e−βt − e−t

β − 1
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Can rewrite as

ui(t) =
∑

j

wij

∫ ∞

0
ε(s)Aj(t − s)ds

where Aj(t) =
∑

l δ(t − tlj) is the “activity" of neuron j

ui is almost constant if input is uncorrelated (or if
synapses are slow)

Average of Ai is the firing rate of neuron i given ui, i.e.
Ai = f [ui]
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For integrate-and-fire neuron:

f [u] = 1/ ln

[

I + u

I + u − 1

]
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f [u] is the ‘gain function’
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This gives the mean field equations

ui =
∑

wijf [uj ], Ai = f [ui]

Matched simulations of integrate-and-fire network (with
Carlo Laing)

0
20

40
60

80
100

0

0.2

0.4

0.6

0.8 1

1.2

1.4

O
scillator N

um
ber

Activity 

O
scillator N

um
ber

t

20
40

60
80

100

05101520253035

Localized Pulses in Neural Networks – p.9/48



Dynamics

Suppose inputs are slowly varying: Ai(t) ' f [ui(t)],

ui(t) =
∑

j

wij

∫ t

−∞
ε(t − s)f [uj(s)]ds

If ε(t) ∼ exp(−t/τ)/τ then

τ
dui(t)

dt
= −ui +

∑

j

wijf [uj ]

(..., Wilson-Cowan, Cohen-Grossberg, Amari, Ermentrout,...)

Breaks down if not slowly varying (Gerstner, van Hemmen)
–Spike response formalism
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Coarse-grain in space

τ
∂u(x, t)

∂t
= −u(x, t) +

∫

Ω
w(x − y)f [u(y, t)]dy

Stationary solutions obey

u(x) =

∫

Ω
w(x − y)f [u(y)]dy
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Constant stationary solutions

Suppose
∫

Ω w(x − y)dy = w0, constant solutions ui = u0

satisfy u0 = w0f [u0]

u
0

u T

w
0 f[u

0 ]

Multiple stationary solutions possible (analogue of
memory)
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Localized pulse solutions

u(x) =

∫

Ω
w(x − y)f [u(y)]dy

Spatially dependent weights
e.g. ‘Mexican Hat’ ‘Wizard Hat’

w

x0

w

x0

w(x) = Ae−ax2 − Be−bx2

w(x) = Ae−a|x| − Be−b|x|
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Consider ‘jump linear’ gain function to represent
integrate-and-fire gain

f [u] = [α(u − uT ) + β] H(u − uT )

u
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Find pulse solutions of the form

x

u

u

I IIIII

T
−x xT T

u(xT ) = uT
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Project to Low Dimension

Strategy is to transform to ODE and solve

Fourier transform deconvolves integral operator

u(x) =

∫ ∞

−∞
w(x − y)f [u(y)]dy

to
F [u] = F [w]F [f [u]]

with

F [·] =

∫

eisx · dx, F−1[·] =
1

2π

∫

e−isx · dx
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For w(z) = Ae−a|z| − Be−b|z|

F [w] =
2aA(s2 + b2) − 2bB(s2 + a2)

(s2 + a2)(s2 + b2)

Rearrange to obtain

(s2+a2)(s2+b2)F [u] = 2ab(Ab−Ba)F [f ]+2(aA−bB)s2F [f ]
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Inverse transform

u′′′′ − (a2 + b2)u′′ + a2b2u = 2ab(bA − aB)f [u]

+ 2(aA − bB)
{

f [u(xT )]
[

δ′(x − xT ) + δ′(x + xT )
]

+ f ′[u(xT )]u′(xT ) [δ(x − xT ) + δ(x + xT )]

+
[

f ′′[u(x)](u′)2 + f ′[u(x)]u′′
]

u≥uT

}

Piecewise linear 4th order ODE

Choice of coupling allows for projection to low
dimension
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Pulse solution must satisfy:

1. Boundary conditions
u(x) > uT , −xT < x < xT

u′(0) = u′′′(0) = 0
u(±∞) = 0 and derivatives

2. Matching conditions at x = xT

u(x+
T ) = u(x−

T ) = uT

u′(x+
T ) = u′(x−

T )

u′′(x+
T ) = u′′(x−

T ) + 2(aA − bB)f [u(x−
T )]

u′′′(x+
T ) = u′′′(x−

T ) + 2(aA − bB)f ′[u(x−
T )]u′(x−

T )
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Solutions have the form

I : u(x) = C(eω+x + e−ω+x) + D(eω
−

x + e−ω
−

x) + U0

II : u(x) = Ee−ax + Fe−bx

III : u(x) = Eeax + Febx

where

U0 =
2(β − αuT )(bA − aB)

ab − α(bA − aB)
, ω± =

[

R ±
√

∆

2

]1/2

R = a2 + b2 + 2α(aA − bB), ∆ = [R2 − 4a2b2 + 8αab(bA − aB)]

Solution structure changes as ω± changes
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Matching Conditions

Ee−axT + Fe−bxT = uT

C(eω+xT + e−ω+xT ) + D(eω
−

xT + e−ω
−

xT ) + U0 = Ee−axT + Fe−bxT

ω+C(eω+xT − e−ω+xT ) + ω−D(eω
−

xT − e−ω
−

xT ) = −aEe−axT − bFe−bxT

ω2
+C(eω+xT + e−ω+xT ) + ω2

−D(eω
−

xT + e−ω
−

xT ) = a2Ee−axT + b2Fe−bxT

− 2β(aA − bB)

ω3
+C(eω+xT − e−ω+xT ) + ω3

−D(eω
−

xT − e−ω
−

xT ) =

− a3Ee−axT − b3Fe−bxT + 2α(aA − bB)[aEe−axT + bFe−bxT ]

Pulse exists if solution can be found (5 eq’ns, 5
unknowns)

Solve ‘linear system’ for coefficients C,D,E, F and
obtain existence condition Φ(xT ) = uT

Simple for α = 0, unwieldy otherwise
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Amari’s Solution: α = 0

f [u] = H[u − uT ] with w(z) = Ae−a|z| − Be−b|z|

Existence Condition (uT =
∫ xT

−xT

w(x − y)dy)

Φ(uT ) ≡ A

a
(1 − e−2axT ) − B

b

(

1 − e−2bxT

)

= uT

xT

uT

0 x

u

u
T

0

Two pulse solutions (small and large)

Only large one is linearly stable
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Nonzero α

Examples with A = 1, B = 0.65, a = 0.32, b = 0.18, β = 1
α = 0.1
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α = 0.5
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α = 1.0
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Continuation

Small bump and large bump annihilate in saddle node

α = 0.04
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Height goes to infinity at critical α
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Critical uT (A = a)
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Maximum firing rate
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Dimple and Double Pulses
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Transitions in uT (α = 0.6187, A = 2.8, a = 2.6, B = b = β = 1)
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A = 2.8, a = 2.6, α = 0.9987, β = 1
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x0
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P uT
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u
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◦ small single pulse
• big single pulse
. dimple pulse
× not a valid solution
At P , dimple pulse splits into a double pulse.
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Linear Stability

ut = −u +

∫ ∞

−∞
w(x − y)f [u(y, t)]dy

Let u(x, t) = u0(x) + v(x)eλt and linearize

(1+λ)v(x) = w(x−xT )
v(xT )

c
+w(x+xT )

v(−xT )

c
+α

∫ xT

−xT

w(x−y)v(y)dy

where c > 0 is the slope of u0(x) at −xT

Reλ > 0 indicates instability

Consider wizard hat coupling and solve eigenvalue
problem
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Properties of Eigenvalue Problem

(1 + λ) = L(v)

λ is real

λ = 0 is an eigenvalue (translational invariance)

λ is bounded above by λb

λ ≤ 2w0(
1

c
+ αxT ) − 1 ≡ λb

where w0 is the maximum of |w(x)| on [−xT , xT ]

Eigenfunction v(x) is either even or odd.

L(v) is a compact operator

Essential spectrum is in the left half plane
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Eigenvalues

To evaluate λ explicitly, transform to ODE and solve

Matching conditions across ±xT form linear system of
coefficients M(λ) = 0

Eigenvalues must satisfy DetM(λ) = 0

If there exists 0 < λ < λb then the standing pulse is
unstable

Otherwise pulse is stable
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Stability Results

Small pulse is unstable, large pulse is stable

Can have coexisting stable pulses

Dimple pulses can be stable and coexist with large
pulses

No stable double pulses for Amari case were found
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Compare to spiking models

Search parameter space using jump-linear gain rate
model matched to integrate-and-fire gain rate model
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Simulate in integrate-and-fire spiking model

τ
dv

dt
= I − v +

∑

j

wijsj ,
dsj

dt
= −βsj

at vj = 8, vj → 0, sj → sj + β, τ = .2,
wij = (Ae−a|i−j|dx − e−|i−j|dx)dx
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I = 0.786 A = 1.8 a = 1.6 β = .5
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Increase β
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Gaussian weight function: β = 0.3
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β = 2.5
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β = 3.5
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β = 5

0 10 20 30 40 50 60 70 80 90 100
t

0

20

40

60

80

100
N

eu
ro

n

Localized Pulses in Neural Networks – p.43/48



Dimple Bumps (but not really)
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Multistability
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Double Bumps I = 7.74 A = 2.8 a = 2.65
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Discreteness and Marginal Stability

Discreteness can stabilize marginal modes

Consider pulse of width b in Amari equation

u(x) = φ(x, b), uT = φ(b, b)

φ(x, b) =

∫ b

−b

Ae−a|x−y| − e−|x−y|dy
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b
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 φ
(b
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)

Dimple case
A = 1.8 a = 1.6 uT = 0.124
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Discretization gives stability to marginal modes since
neurons adjacent to edge are below threshold by
∂xφ(x = b, b)dx ∼ (A − 1)dx
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Since φ(b,−b) − uT ∼ 0.001, to eliminate discreteness
effect need adjacent neuron to be above threshold. i.e.
(A − 1)dx < 0.001

Thus dx < 0.00125 or need > 16, 000 neurons in
simulation
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