
Patterns In A Non-Local Model

W. C. Troy (Pittsburgh)

C. R. Laing (Massey)

J. Y. Wu (Georgetown)

S. Huang (Georgetown)

S. Schiff (George Mason)

H. Ma (Georgetown)

Q. Yang (Georgetown)

Patterns In A Non-Local Model – p.1/32



Outline

Part I. Scalar Model.

PDE derivation.

3-bump formation.

Part II. Extension to Systems.

Spirals.

Rings.

Breaking waves to produce spirals.
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Part I. Scalar Model

Goal: Analyze pattern formation in the equation

� �

Wilson and Cowan (1972, 1973), Amari (1977)

is the activity level (voltage) at position at
time

is the coupling weight.

is the firing rate function.

is the threshold.
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The Firing Rate

�

H is the Heaviside function. Below:

f(u)

th=1.5

u

2.0
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PDE Derivation

�

� �

� �

Apply the two–dimensional Fourier transform defined by

�

� �

�

If then

� �

To obtain the PDE

we approximate by a rational function of

� �

Patterns In A Non-Local Model – p.6/32



Example

�

� � �

� � � � � �

�

Identities:

� � � � � � �

Resultant PDE:

� � �

�
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N-bump solutions.

(I) Change to polar coordinates and find symmetric solns.

�
�

�
� �

�
� �

�
�

�

�

(II) Find stationary solutions of the ODE problem

(III) Linearize the PDE around the ODE solution
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Linearization

To first order satisfies

�
�

�
�

� �

�

�
�

� �

�

� � � � � �

�

Let

�
�

We expect that

	 �

	 �

where is the largest eigenvalue, is the eigenfunction.
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Example: M=1, A=.4, B=.1

� �

� � �

The inverse is given by
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ODE Bifurcation diagram.
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3-Bump Formation
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12-Bump Formation
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Part II. Extension To Systems

is a recovery variable. is an external input.

Pinto and Ermentrout: I and II (2001); 1D waves,

Bressloff, Folias, Pratt, Li (2003); 1D waves,

Folias and Bressloff (2004); 2D waves,
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Equivalent PDE’s

� �
The PDE method: transform

into

� � �

�

�
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Let For each solve

� � �

�

�

& &

Patterns In A Non-Local Model – p.16/32



Positive Coupling

Approximate

�

by the Fourier transform method.

M=-2.5, A=7, B=.52

w
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Circles:

�

Solid curve: approximation
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Rotating Waves

Rabbit cortex: Petsche et al (1974)

Chic retina: Gorelova and Bures (1983)

Turtle: Prechtel et al (1997)

Mouse Hippocampus: Harris-White et al (1998)

EEG Patterns: www.ccs.fau.edu/ jirsa/Imaging.html

Models

BZ Reaction Diffusion Model: Winfree (1974)

Discrete Systems: Greenberg and Hastings (1978)

Integrate and Fire Models: Chu, Milton and Cowan (1994)

RD Equations: Golubitsky, Knobloch and Stewart (2000)

Theta Neuron Model: Osan and Ermentrout (2001)
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Rigid Rotating Waves

Substitute into

� � �

�
�

and obtain

� � �
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Limiting Case:

� � �

reduces to

� � �

� �

� '
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�

� �

� '

Spiral for Spiral for
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Spiral Drift
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u(−3.8,1.8,t)

Spiral Drift
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Wu et al (August 2003)
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Wu et al (Feb 2004)
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Non-rotating Waves

Waves can propagate with different speeds and shapes.

R. Chervin, P. Pierce & B. Connors. Periodicity and
directionality in the propagation of epileptform discharges
across neocortex. Jour. of Neurophysiology (1988)

J. Y. Wu, L. Guan, L. Bat & Q. Yang, Spatio-temporal
properties of an evoked population activity in rat sensory
cortical slices. Jour. of Neurophysiology (2001)

D. Pinto & B. Connors. The fine structure of waves in
neocortex. (2004), in preparation

D. Glaser & D. Barch. Bow Waves. Neurocomp. (1999)
http://foresight.berkeley.edu
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Inhomogeneous Coupling

� � �

�

�

�
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Wu et al (Dec. 2003)
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Wu et al (Dec 2003)
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Broken Waves

Break early Later. Later still. .
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Spiral Drift
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Inhomogeneous Coupling
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Periodic Waves

Experiment 3: Jan. 2004 Experiment 4: Jan. 2004
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Broken Rings

Symmetric Coupling Inhomogeneous Coupling
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