## Inhibition: Effects of Timing, Time Scales and Gap Junctions

- I. Auditory brain stem neurons and subthreshold integ'n.
- Fast, precise (feed forward) inhibition shapes ITD tuning.
- Facilitating effects of brief inhibition: PIF, PIR etc.

w/ Svirskis, Dodla, Sanes, Kotak

- II. Synchonization/locking with inhibition
  - Sync'ing between coupled cells, w/ slow decay inhib'n.
  - Gap junctions and inhib'n in neocortex slices; weak coupling. w/ Lewis
  - Very fast inhibition; gap junctions can stabilize anti-phase then in-phase.

w/ Bem, Terman

Auditory brain stem neurons and subthreshold integration.

# In vivo data from the barn owl shows NL neurons encode ITD



ITD sensitivity arises from a **coincidence detection** mechanism, as in the Jeffress model



Schematic of circuit for low frequency coincidence detection in mammals. (D Sanes w/ focus on gerbil.)



## Tuning for Interaural Time Difference (ITD), shaped by transient inhibition



Brand et al, 2002

## HH-type model with currents: $I_{NA}$ $I_{KHT}$ and subthreshold $I_{KLT}$ (Rathouz & Trussell, '98)

J Neurosci, 2002



**Subthreshold negative feedback**: eg, I <sub>KLT</sub> improves: SNR, phase-locking, CD, narrows integration time window (rev corr'ln)

## Effect of brief and precise timed inhibition on tuning for the HH-like model.



Input: periodically modulated Poisson; 500 Hz; delay (ITD) between ipsi & contra

Svirskis,Dodla,Rinzel Biological Cybernetics, 2003

#### **Temporal summation of excitation and inhibition**



Subthreshold nonlinearities:







 $\begin{bmatrix} 150 \\ (SE) \\ (SE)$ 

Brief inhib'n:  $0.1 < \tau_{inh} < 1.0$  msec



Experiment (Gerbil MSO, slice)

Reduced 2-variable model: V-w (activ'n of I  $_{KLT}$ ); m=m $_{\infty}$ (V); h,n frozen







## Synchonization/locking with inhibition.

- Time scales
- Gap junctions

#### Effect of Synaptic Kinetics on Temporal Patterning in an Inhibitory Network

Two mutually inhibitory cells with PIR



## "Spindle Waves" in "Sleeping" Thalamic Slice

McCormick Lab



Synaptic blocking expts

#### **Inhibitory subcircruits in CNS can have gap junctions.** Connors lab and others (Nature, 1999)

Circuitry in neocortical layer 4:



We focus on network (cell-pairs) of Fast Spiking cells. Coupling is weak.

#### **Electrical coupling between Neocortical Interneurons**

Dual recordings from pairs of FS cells in layers III - VI of rat barrel cortex





Mancilla, Lewis, Pinto, Rinzel, Connors, 2004

### Combined effects of gap junctions and inhibition



#### Synchrony or anti-synchrony if cells fast/slow relative to synapses

Lewis & Rinzel, 2003 van Vreeswijk, et al, 1994



#### **Combined effects of inhibition, gap junctions, and cell frequency.**



Lewis & Rinzel, 2003

**Weak Electrical Coupling Alone -** Protocol: DC current steps were used to bring cell pairs to a common firing frequency. Pairs were then forced into anti-phase using 4 or 8 brief suprathreshold current pulses. FS cells in layers III - VI of rat barrel cortex.



Mancilla, Lewis, Pinto, Rinzel, Connors, 2004

Half-Center Seduction

Mutually inhibitory cells oscillate in anti-phase.



CPGs: Slow wave as burst envelope. 50% duty cycle, instantaneous synapses

FHN-like models; instantaneous g<sub>syn</sub>

Short duty cycle ==> Almost in-phase (AIP) w/o gap junctions.

OM

AIP  $g_{gap}$  AP  $g_{gap}$  $g_{gap}$  IP

w/ T Bem, D Terman

Bem, JR: J Neurophys, 2004

## Response diagram for duty cycle =0.16



Bem, JR: J Neurophys, 2004

## **Inhibition and Exciting Consequences**

Classical:

- gain control
- timed opposition of excitation
- network rhythmogenesis: recurrent excitation + slower inhibition
- *half-center oscillator* CPG: mutual inhibition => anti-phase

Updated:

- shaping of **dynamic** tuning properties
- timed enhancement of excitation
- purely inhibitory network, synchronized; slow \_\_inh
- working w/ gap junctions in CNS circuits; LIF models
- very fast inhib'n (relax'n spikers) almost IP, then w/ modest gap jns AP, bistable w/ IP.