Firing Patterns in the Subthalamopallidal Network

David Terman Ohio State University Mathematical Biosciences Institute

> MSRI March 17,2004

BASAL GANGLIA

BASAL GANGLIA

- Involved in the Control of Movement
- Dysfunction Associated with Parkinson's and Huntington's Disease
- Site of Surgical Procedures
 -- Deep Brain Stimulation (DBS)

Motivation of Computational Study

- Previous Models for Neuronal Activity in BG are Static, Based on Mean Firing Rate.
- Recent Experiments have Shown that Pattern of Neuronal Activity may be Important.
- During PD, Neurons Display:
 - Increased Synchrony
 - Increased Bursting Activity
- Earlier Models do not Explain Tremor.
- Mechanism Underlying DBS Mysterious.

BASAL GANGLIA

Note: Other Pathways May Be Important

Parkinson's Disease

- Movement Disorder
 - Slowness of Movement
 - Inability to Initiate Movement
 - Rigidity
 - Tremor
- Reduction of Dopamine
- Increased Activity in Output Nuclei

Parkinson's Disease

- Movement Disorder
 - Slowness of Movement
 - Inability to Initiate Movement
 - Rigidity
 - Tremor
- Reduction of Dopamine
- Increased Activity in Output Nuclei

QUESTION: How Does the Loss of Dopamine Lead to Increased Activity in Output Nuclei?

Standard Theory (Albin / DeLong)

- Problems With The Standard Theory
 - Does Not Explain Tremor
 - Unclear if GPe Activity Decreases in Parkinsonian State
 - Lesions alleviate hyperkinetic disturbances

- Problems With The Standard Theory
 - Does Not Explain Tremor
 - Unclear if GPe Activity Decreases in Parkinsonian State
 - Lesions alleviate hyperkinetic disturbances
- Possible Explanations
 - Only Considers Mean Firing Rate
 - Role of Inhibition/Excitation More Complicated
 - Pattern of Activity May Be Important
 - Synchronization

Experimental Results

- Neurons Display Increased Synchrony
 During Parkinsonian State
- Isolated GPe/STN Network Can Generate Synchronous Rhythms (Plenz,Kitae – slow rhythm)

MODELING STUDY (T., Rubin, Yew, Wilson)

- Construct Model GPe/STN Network.
- Can Such a Network Generate Synchronous, Tremor-Like Rhythms?
- What Other Activity Patterns Arise?
- Reinterpret Role of Indirect Pathway.

MODEL STN NEURON

$$C_M \frac{dV}{dt} = -I_L - I_K - I_{Na} - I_T - I_{AHP} - I_{Ca}$$

$$I_{L} = g_{L}(V - V_{L}), \qquad I_{K} = g_{K}n^{4}(V - V_{K}),$$

$$I_{Na} = g_{Na}m^{3}(V)(V - V_{Na}), \quad I_{T} = g_{T}a_{\infty}^{3}(V)b_{\infty}^{2}(r)(V - V_{Ca}),$$

$$I_{Ca} = g_{Ca}s_{\infty}^{2}(V)(V - V_{Ca}), \quad I_{AHP} = g_{AHP}\frac{[Ca]}{[Ca] + k}(V - V_{K})$$

$$X' = \phi_X \left(\frac{X_{\infty}(V) - X}{\tau_X(V)} \right), \qquad X = n, h, r$$

$$[Ca]' = \epsilon(-I_{Ca} - I_T - k_{Ca}[Ca])$$

Based on Experiments (Bevan and Wilson)

Firing Properties of STN Cells

Experiment

Model

- High Frequency Firing with Applied Current
- Secondary Range in F-I Curve
- Reverse Spike Frequency Adaptation

Reverse Spike Frequency Adaptation Leads to Increased Correlation of Incoming Signal

First Return Map for ISIs

Serial Correlation

(Wilson, Weyrick, T. ,Hallworth, Bevan)

Firing Properties of STN/GPE Neurons

Post Inhibitory Rebound

Firing Profiles

STN/GPe NETWORK

The Model Exhibits a Variety of Activity Patterns

Irregular (Normal)

Synchronous Clusters (Park)

Propagating Waves

Transition between Irregular and Rhythmic Activity

Irregular (Normal)

Clustering (Parkinson)

- What Parameter Changes Can Account for this Transition ?
- Can This Transition Arise Due to Rebound Properties of STN Cells ?

(Best,Park,Wilson,T.)

Clustering

GPe Cell Fires due to Excitation from STN

STN Fires due to Post-Inhibitory Rebound

Dependence on Parameters

Period

Spikes / Cluster

Irregular Firing Can Arise if Inhibition to STN Cells is Weak

Analysis of Irregular Firing

Consider a Periodically Forced GPe Cell:

Analysis of Irregular Firing

GPe

STN

Consider a Periodically Forced GPe Cell:

OUTLINE of ANALYSIS

- Fast/Slow Analysis of GPe Cell
- Phase-Response Curve for GPe Cell
- Construct a 1-D Map

-40-60 -80 -80 -100 200 300 400 500 600 700 800

Dynamics Reduce to a Single Equation for the Slow Variable

Good Approximation:

 $Ca' = \begin{cases} -\lambda_{S} & cell silent \\ \lambda_{A} & cell active \end{cases}$

Phase-Response Curve for GPe Cell

Phase-Response Curve for GPe Cell

- Perturb GPe Cell at Time t
- φ(t) = time when GPe cell ends its next active phase

Choose t=0 when GPe cell ends an active phase

t

t₁

One Dimensional Map

- t = time from STN firing to fall-down of GPe cell
- π(t) = time of next GPe fall-down since STN firing

Linear Approximation of Map

 $T_{GPe} < T_{STN}$ $T_{GPe} > T_{STN}$ Slope $-\lambda_A / \lambda_S$ Slope $-\lambda_A / \lambda_S$ Slope 1 Slope 1 0 L 0 0 L 0

Numerically Computed Map

 $T_{GPe} > T_{STN}$

T_{GPe} < T_{STN}

SUMMARY

- STN/GPe Network Exhibits Both Irregular and Synchronous Rhythmic Activity
- STN Cells show Reverse Spike Adaptation that May Increase Correlations
- Transition Between Irregular and Rhythmic Patterns May Arise from Changes in Rebound Properties of STN Cells
- Dynamics of Irregular and Clustered Rhythms can be analyzed using lower-dimensional maps

 $t_1 t_2$