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Two Identical Cells

1 2 ẋ1 = g(x1, x2)

ẋ2 = g(x2, x1)

σ(x1, x2) = (x2, x1) is a symmetry

Fix(σ) = {x1 = x2} is flow invariant
Synchrony is a robust phenomenon

Time-periodic solutions can exist where
two cells oscillate a half-period out of phase

x2(t) = x1(t +
1

2
)
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Symmetry Overview

Basic questions for symmetric differential equations

(a) What is meant by symmetry for a DiffEq ẋ = f(x)?

(b) What kinds of symmetry can solutions have?

(c) How does sol’n symmetry change with parameters?

(a) Symmetry: γ(sol’n) = sol’n ⇐⇒ f(γx) = γf(x)

(b,c) Symmetry group Γ is a modeling assumption
Γ is specified in advance

Solution symmetry depends on type of solution

Related: Network architecture is modeling assumption
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Fixed-Point Subspaces

Σ ⊂ Γ is a subgroup

Fixed-point subspace: Fix(Σ) = {x : σx = x ∀σ ∈ Σ}

Fix(Σ) is flow-invariant: σf(x) = f(σx) = f(x)
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Symmetry and Synchrony

Coupled cell systems described by graph

1 2

4 3

ẋi = g(xi, xi−1, xi+1)

g(x, y, z) = g(x, z, y)
D4 symmetry

Output from different cells can be compared

Fixed-point subspaces are synchrony subspaces

Example: σ = (2 4) x2(0) = x4(0) =⇒ x2(t) = x4(t)

Question: Are all synchrony spaces fixed-point spaces?

Answer: No
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Symmetry and Synchrony

Coupled cell systems described by graph

1 2

4 3
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Spatio-Temporal Symmetries

Question: Assume Γ is finite

How are spatiotemporal symmetries of time-periodic
solutions described in Γ-symmetric systems

Let x(t) be a time-periodic solution

• K = {γ ∈ Γ : γx(t) = x(t)} space symmetries

• H = {γ ∈ Γ : γ{x(t)} = {x(t)}} spatiotemporal symm’s

Facts:

• h ∈ H =⇒ θ ∈ S
1 such that hx(t) = x(t + θ)

• H/K is cyclic
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3-Cell Directed Ring: Rotating Wave

How do spatio-temporal symmetries manifest themselves in
coupled cell systems? Answer: phase synchrony

1

2 3

One-dimensional internal dynamics.
Phase space is R

3

K = 1; H = Z3

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

x 1

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

x 2

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

x 3

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

t

Coupled Cell Systems – p.8/36



Another Three-Cell System

1 2 3

ẋ1 = f(x1, x2)

ẋ2 = g(x2, x1, x3) g(x2, x1, x3) = g(x2, x3, x1)

ẋ3 = f(x3, x2)

Symmetry: σ(x1, x2, x3) = (x3, x2, x1)

Fix(σ) = {x1 = x3} is flow-invariant

Out-of-phase periodic solutions (H = Z2(σ), K = 1):

σX(t) = X
(
t + 1

2

)

x3(t) = x1

(
t + 1

2

)
and x2(t) = x2

(
t + 1

2

)
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Another Three-Cell System (2)
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Quadrupedal Gaits

Left
Front

Right
Front

Left
Rear

Right
Rear

1 2

3 4

0

TROT:
 1/2

 0  1/2

PACE:

WALK:
3/41/2 1/4 0

Black disk indicates time when foot hits ground

Trot Thanks to: Sue Morris at http://www.classicaldressage.co.uk

G., Stewart, Buono, and Collins (1999, 2000)
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Gait Symmetries

Gait Spatio-temporal symmetries

Trot (Left/Right, 1

2
) and (Front/Back, 1

2
)

Pace (Left/Right, 1

2
) and (Front/Back, 0)

Walk (Figure Eight, 1

4
)

0

TROT:
 1/2

 0  1/2

PACE:

WALK:
3/41/2 1/4 0

Collins and Stewart (1993)
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Central Pattern Generators (CPG)
Assumption: There is a network in the nervous system that
produces the characteristic rhythms of each gait

CPG is network of neurons; neurons modeled by ODEs

Locomotor CPG’s modeled by coupled cell systems

Kopell and Ermentrout (1986, 1988, 1990);
Rand, Cohen, and Holmes (1988); etc.

Design simplest network to produce walk, trot, and pace

Simplest network

One cell ‘signals’ each leg
1 2

3 4
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Four Cells Do Not Suffice

Γ = symmetry group of network

Network produces walk. There is a four-cycle

(1 3 2 4) ∈ Γ

Four-cycle permutes pace to trot

PACE TROT

1 2

3 4

1 2

3 4

CPG cannot be modeled by four-cell network
where each cell gives rhythmic pulsing to one leg

Coupled Cell Systems – p.14/36



Advanced Gait Modeling

Use symmetries to construct coupled cell network.

1) walk =⇒ four-cycle ω in symmetry group
2) pace or trot =⇒ transposition κ in symmetry group
3) Simplest network

LF

LH

LF

LH RH

RF

RH

RF

1 2

3 4

5 6

7 8

Γ = Z4(ω) × Z2(κ) is abelian
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Primary Gaits: H = Γ = Z4(ω) × Z2(κ)

K Γ/K Phase Diagram Gait

Γ 1

0

@

0 0

0 0

1

A pronk

< ω > Z2

0

@

0 1

2

0 1

2

1

A pace

< κω > Z2

0

@

1

2
0

0 1

2

1

A trot

< κ, ω2 > Z2

0

@

0 0

1

2

1

2

1

A bound

< κω2 > Z4

0

@

±
1

4
±

3

4

0 1

2

1

A walk±

< κ > Z4

0

@

0 0

±
1

4
±

1

4

1

A jump±

• Primary gaits occur by Hopf bifurcation from stand
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The Jump

Average Right Rear to Right Front = 31.2 frames

Average Right Front to Right Rear = 11.4 frames

31.2
11.4 = 2.74
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Coupled Cell Theory

input sets and input isomorphisms

network architecture = symmetry groupoids

balanced colorings and synchrony subspaces

quotient networks

Stewart, G., and Pivato (2003); G., Stewart, and Török (2004)
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Asymmetric Three-Cell Network

1 2

3 ẋ1 = f(x1, x2, x3)

ẋ2 = f(x2, x1, x3)

ẋ3 = g(x3, x1)

Y = {x : x1 = x2} is flow-invariant

Synchrony spaces exist in networks without symmetry

Restrict equations ẋ1, ẋ2 to Y
ẋ1 = f(x1, x1, x3)

ẋ2 = f(x1, x1, x3)

Cells 1 and 2 are identical within the network

Coupled Cell Systems – p.19/36



Asymmetric Three-Cell Network

1 2
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Input Sets

Input set of cell j: Cell j & cells i that connect to j

1 2

3

1 2

3

1

3

Key idea: cells 1, 2 have isomorphic input sets
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Coupled Cell Network Definition

A set of cells C = {1, . . . , N}

An equivalence relation on cells

Each cell c has input terminal I(c) with incoming arrows

An equivalence relation on arrows

Equivalent arrows have equivalent tail and head cells

A coupled cell network is represented by a graph

For each class of cells choose node symbol ©,�,4

For each class of arrows choose arrow symbol →,⇒, 
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Symmetry Groupoid

An input isomorphism is a bijection β : I(c) → I(d) that
preserves arrow types

BG = set of all input isomorphisms; BG is a groupoid

Groupoid is like group; but product not always defined

Coupled cell systems: ODEs that commute with BG
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Synchrony Subspaces

Color cells in C (red, blue, maroon, etc)

∆ = {x : xc = xd whenever c and d have same color}

Synchrony subspace if ∆ is always flow invariant

∆ is coupled cell analog of fixed-point subspace

Coloring is balanced if every pair of cells with same color
has a color preserving input isomorphism

Theorem: synchrony subspace ⇐⇒ balanced

Stewart, G., and Pivato (2003)
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Example: Lattice Dynamical Systems
Consider square lattice with nearest neighbor coupling

Form a two-color balanced relation

Each black cell connected to two black and two white
Each white cell connected to two black and two white

Stewart, G. and Nicol (2003)
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Lattice Dynamical Systems (2)

There are eight isolated balanced two-colorings on
square lattice with nearest neighbor coupling

Wang and G. (2004) indicates nonsymmetric solution
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Lattice Dynamical Systems (3)

There are two infinite families of balanced two-colorings

A continuum of different synchrony subspaces exist
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Lattice Dynamical Systems (4)

Up to symmetry these are all balanced two-colorings

Lemma: Each balanced two coloring leads to equilibria
in one parameter bifurcations

Architecture is important

No infinite families with next nearest neighbor coupling
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Hexagonal Lattice: NNN Coupling

There are 13 two-color patterns of synchrony in hex lattice
with nearest and next nearest neighbor coupling
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Three-Cell Feed-Forward Network

1 2 3

ẋ1 = g(x1, x1)

ẋ2 = g(x2, x1)

ẋ3 = g(x3, x2)

α = linearized internal

J =

2

6

6

4

α + β 0 0

β α 0

0 β α

3

7

7

5

β = linearized coupling

Network supports solution by Hopf bifurcation where
x1(t) equilibrium x2(t), x3(t) time periodic
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t

x2(t) ≈ λ1/2 x3(t) ≈ λ1/6
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ẋ2 = g(x2, x1)
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Three-Cell Feed-Forward Network (2)

Network supports solution where

x1(t) equilibrium, x2(t) time periodic, x3(t) quasiperiodic

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

4

6
x 10−33

x 1

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

x 2

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

x 3

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

t

Coupled Cell Systems – p.30/36



Patterns in Hyperbolic Equilibria

Let x0 = (x0
1, . . . , x

0
N ) be a hyperbolic equilibrium

Color cells c, d same color iff x0
c = x0

d

∆ = {x : xc = xd if c and d have same color}

Coloring is rigid if perturbed hyperbolic equilibria in ∆

Theorem: Coloring is rigid iff balanced

Conjecture: Hyperbolic periodic solutions can have rigid
phase shift synchrony only when there is a symmetric
quotient network

G., Stewart, and Török (2003)
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Quotient Cell Systems

Given cell network C and balanced coloring ./

Define quotient network C./ by

C./ = {c : c ∈ C} = C/ ./

Quotient cells equivalent if C cells equivalent
Quotient arrows are projections of C arrows
Quotient arrows equivalent if C arrows equivalent

Thm: C-admissible DE restricted to ∆./ is C./-admissible

Every C./-admissible DE on ∆./ lifts to C-admissible DE

G., Stewart, and Török (2003)
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Asymmetric Five-Cell Network
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Quotient is bidirectional 3-cell ring with D3 symmetry

One-parameter synchrony-breaking Hopf yields
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Two Color Quotient Networks

Every balanced two coloring has two-cell quotient
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Two-Color Branching Lemma

m1

m2

k1 k2

1 2

` = k1 + m1 = k2 + m2

ẋ1 = g(x1, x1, . . . , x1
︸ ︷︷ ︸

k1

, x2, . . . , x2
︸ ︷︷ ︸

m1

)

ẋ2 = g(x2, x2, . . . , x2
︸ ︷︷ ︸

k2

, x1, . . . , x1
︸ ︷︷ ︸

m2

)

x1 = x2 is flow-invariant

Let α = linearized internal and β = linearized coupling

Jacobian =

[

α + k1β m1β

m2β α + k2β

]

Eigenvalues are α + `β ((1, 1)) and α + (k1 + k2 − `)β

Vary α — get synchrony-breaking bifurcation
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Two-Color Synchrony-Breaking Hopf

Unique synchrony-breaking Hopf bifurcation

Periodic sol’ns are synchronous on cells of same color

Near bifurcation — to first order

Opposite color cells ≈ one-half period out of phase
Ratio of amplitudes of opposite color cells ≈ m1/m2

12

m1 = 2 m2 = 1
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