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Two Identical Cells

(___ <:::> - "<:::> :?1 = g(z1,22)

9y, 9(5132@1)

-

® o(x1,r2) = (22, 71) IS @ SYymmetry
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Two Identical Cells

(___ <:::> - "<:::> :?1 = g(z1,22)

9y, 9(1'2@1)

® o(x1,r2) = (22, 71) IS @ SYymmetry

® Fix(o) = {x1 = x2} Is flow invariant
Synchrony is a robust phenomenon
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Two Identical Cells

.
(D= o

® o(x1,r2) = (22, 71) IS @ SYymmetry

=

® Fix(o) = {x1 = x2} Is flow invariant
Synchrony is a robust phenomenon

# Time-periodic solutions can exist where
two cells oscillate a half-period out of phase

2o(t) = (£ + %)

o -
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Symmetry Overview

f # Basic questions for symmetric differential equations T
(a) What is meant by symmetry for a DiffEq © = f(x)?
(b) What kinds of symmetry can solutions have?

(c) How does sol'n symmetry change with parameters?

o -
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Symmetry Overview

f # Basic questions for symmetric differential equations T
(a) What is meant by symmetry for a DiffEq © = f(x)?
(b) What kinds of symmetry can solutions have?

(c) How does sol'n symmetry change with parameters?

® (a) Symmetry: ~(sol'n) =sol'n <« f(yx)="f(2)

o -
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Symmetry Overview

o .

# Basic questions for symmetric differential equations
(a) What is meant by symmetry for a DiffEq © = f(x)?
(b) What kinds of symmetry can solutions have?

(c) How does sol'n symmetry change with parameters?
® (a) Symmetry: ~(sol'n) =sol'n <« f(yx)="f(2)

® (b,c) Symmetry group I' is a modeling assumption
' Is specified in advance

o -
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Symmetry Overview

=

Basic questions for symmetric differential equations
(a) What is meant by symmetry for a DiffEq © = f(x)?
(b) What kinds of symmetry can solutions have?

(c) How does sol'n symmetry change with parameters?
(@) Symmetry: ~y(sol'n) =sol'n <« f(yz)="~f(x)

(b,c) Symmetry group I' is a modeling assumption
' Is specified in advance

Solution symmetry depends on type of solution

-
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Symmetry Overview

o .

# Basic questions for symmetric differential equations
(a) What is meant by symmetry for a DiffEq © = f(x)?
(b) What kinds of symmetry can solutions have?
(c) How does sol'n symmetry change with parameters?

® (a) Symmetry: ~(sol'n) =sol'n <« f(yx)="f(2)

® (b,c) Symmetry group I' is a modeling assumption
' Is specified in advance

# Solution symmetry depends on type of solution

® Related: Network architecture is modeling assumption

-
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Fixed-Point Subspaces

o .

#® > CI'is asubgroup
® Fixed-point subspace: Fix(X)={x:0x =2 Voe X}

® Fix(2) is flow-invariant: of(x) = flox) = f(x)
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Symmetry and Synchrony
- -

o Coupled cell systems described by graph

@ H@ Ti = g(xi, Ti—1,Tit1)
l l D4 symmetry

(5 g(z,y,2) = g(z,2,9)

Output from different cells can be compared

o -
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Symmetry and Synchrony
-

o Coupled cell systems described by graph
O —G T = §(Ti, Ti—1, Tit1)

| | D, symmetry

(5 g(2,y,2) = g(x,2,9)
Output from different cells can be compared

# Fixed-point subspaces are synchrony subspaces
Example: o= (24) 12(0) = 24(0) = xa(t) = x4(2)

o -

Coupled Cell Systems — p.6/3



Symmetry and Synchrony
-

o Coupled cell systems described by graph

@ H@ Ti = g(xi, Ti—1,Tit1)
l l D4 symmetry
@4_.@ g(xayaz):g(’f?’z’y)

Output from different cells can be compared

# Fixed-point subspaces are synchrony subspaces

Example: o= (24) 12(0) = 24(0) = xa(t) = x4(2)

o Question: Are all synchrony spaces fixed-point spaces?

Answer: No

o -
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Spatio-Temporal Symmetries

o .

® Question: Assume I' is finite

How are spatiotemporal symmetries of time-periodic
solutions described in I'-symmetric systems

o -

Coupled Cell Systems —p.7/3



Spatio-Temporal Symmetries

o .

® Question: Assume T'is finite

How are spatiotemporal symmetries of time-periodic
solutions described in I'-symmetric systems

# Let z(t) be a time-periodic solution
o K ={yeTl :~vx(t) =x(t)} space symmetries
o H={yeTl :~{z(t)} ={x(t)}} spatiotemporal symm’s

o -
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-

® Question: Assume I' is finite

Spatio-Temporal Symmetries

-

How are spatiotemporal symmetries of time-periodic
solutions described in I'-symmetric systems

Let x(¢) be a time-periodic solution
o K ={yeTl :~vx(t) =x(t)} space symmetries
o H={yeTl :~{z(t)} ={x(t)}} spatiotemporal symm’s

Facts:

ehc H=0cS' suchthat haz(t)=az(t+0)
e [//K is cyclic

-
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3-Cell Directed Ring: Rotating Wave

o -

How do spatio-temporal symmetries manifest themselves in
coupled cell systems?  Answer: phase synchrony

# One-dimensional internal dynamics.
/N Phase space is R?

1F B . \ | 1 | / ) | i
' \ \ \ ‘u
< 0F g _ _ _
s |
-15
2 0 10 20 30 40 50 60 70 80 90 100
0 10 20 30 40 50 60 70 80 90 100 t
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Another Three-Cell System

O (D =G
1 = f(x1,22)
® iy = g(x2,71,23) g(x2, 1, 23) = g(x2, 23, 21)
'jj?) — f(x?)axQ)



Another Three-Cell System

B o
D )

1 = f(x1,22)
® iy = g(x2,71,23) g(x2, 1, 23) = g(x2, 23, 21)
:b?) — f(x?)axZ)

o Symmetry: o(z1, 72, 73) = (73, 72,71)

Fix(o0) = {x1 = x3} IS flow-invariant
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Another Three-Cell System

- -

1 = f(x1,22)
® iy = g(x2,71,23) g(x2, 1, 23) = g(x2, 23, 21)
jj?) — f(x?)axQ)

o Symmetry: o(z1, 72, 73) = (73, 72,71)

Fix(o0) = {x1 = x3} IS flow-invariant

# Out-of-phase periodic solutions (H = Zs(0), K = 1):
oX(t) =X (t+3)
L r3(t) =21 (t+3) and  xa(t) =22 (E+3) J
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Another Three-Cell System (2)
- -

WAL

i

_025 IIIIIIIII
0 0
d Cell Systems — p.10/3
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Quadrupedal Gaits
B o

TROT: - —— =
0 12
Left Right PACE: = — - =
Front D Front
0 12
o ® O O
Left (1 @Right WALK: = i = C
Rear Rear O i © O qp 3 @

o Black disk indicates time when foot hits ground

o | Trot Thanks to: Sue Morris at http://www.classicaldressage.co.uk

\— G., Stewart, Buono, and Collins (1999, 2000) J
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Gait Symmetries

f Gait Spatio-temporal symmetries T

Trot | (Left/Right, 1) and (Front/Back, 1)
Pace | (Left/Right, 3) and (Front/Back, 0)
Walk (Figure Eight, 1)

TROT: ;ﬁé %ﬁ% —
0 172
PACE: ;]:%; %iié _—
0 172
o ® O O
WALK: ﬁééj: »ﬁé@j
O s © 34 @

® n

\_Collins and Stewart (1993) J
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Central Pattern Generators (CPG)

f #® Assumption: There is a network in the nervous system that T
produces the characteristic rhythms of each gait

o -
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Central Pattern Generators (CPG)

f #® Assumption: There is a network in the nervous system that T
produces the characteristic rhythms of each gait

# CPG is network of neurons; neurons modeled by ODEs

o -
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Central Pattern Generators (CPG)

f #® Assumption: There is a network in the nervous system that T
produces the characteristic rhythms of each gait

# CPG is network of neurons; neurons modeled by ODEs

#® Locomotor CPG’s modeled by coupled cell systems

Kopell and Ermentrout (1986, 1988, 1990);
Rand, Cohen, and Holmes (1988); etc.

o -
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Central Pattern Generators (CPG)

f #® Assumption: There is a network in the nervous system that T
produces the characteristic rhythms of each gait

# CPG is network of neurons; neurons modeled by ODEs

#® Locomotor CPG’s modeled by coupled cell systems

Kopell and Ermentrout (1986, 1988, 1990);
Rand, Cohen, and Holmes (1988); etc.

#® Design simplest network to produce walk, trot, and pace

o -
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Central Pattern Generators (CPG)

f #® Assumption: There is a network in the nervous system that T
produces the characteristic rhythms of each gait

# CPG is network of neurons; neurons modeled by ODEs

#® Locomotor CPG’s modeled by coupled cell systems

Kopell and Ermentrout (1986, 1988, 1990);
Rand, Cohen, and Holmes (1988); etc.

#® Design simplest network to produce walk, trot, and pace
<
Simplest network % %)

One cell ‘signals’ each leg

| (D) -
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Four Cells Do Not Suffice
-

# ['=symmetry group of network

#® Network produces walk. There is a four-cycle
(1324) el

o Four-cycle permutes pace to trot

OB OB ONO

-
O @ O ¢

PACE TROT

#® CPG cannot be modeled by four-cell network

L where each cell gives rhythmic pulsing to one leg J
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Advanced Gait Modeling

o .

#® Use symmetries to construct coupled cell network.
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Advanced Gait Modeling

o .

#® Use symmetries to construct coupled cell network.
1) walk = four-cycle w In symmetry group

o -

Coupled Cell Systems — p.15/3f



Advanced Gait Modeling

o .

#® Use symmetries to construct coupled cell network.

1) walk = four-cycle w In symmetry group
2) pace or trot = transposition x in symmetry group

o -
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Advanced Gait Modeling

o .

#® Use symmetries to construct coupled cell network.

1) walk = four-cycle w In symmetry group
2) pace or trot = transposition x in symmetry group
3) Simplest network

o -

Coupled Cell Systems — p.15/3f



Advanced Gait Modeling

o .

#® Use symmetries to construct coupled cell network.

1) walk = four-cycle w In symmetry group
2) pace or trot = transposition x in symmetry group
3) Simplest network

! !
LH=- @@ ffffff ~ RH
\— o | = Z4(w) X ZQ(KJ) IS abelian J
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Primary Gaits: H ="' = Z4(w) X Zs(k)

-

.

K I'/K | Phase Diagram Gait
0O O
I 1 pronk
0O O
o 1L
<w > 7 2 pace
o 1L
2
L0
2
< Kw > Zo ( ) trot
o 1
2
, 0 0
< K,w* > Zo - bound
2 2
+1 43
< kw? > Z4 4 ‘11 walk=®
0 3
0 0 :
< K> 7.4 ) ) jump*
Ty T3

=

Primary gaits occur by Hopf bifurcation from stand J
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The Jump
| -

82 P 108 115 150 160

188 198 227 232 264 275

#® Average Right Rear to Right Front = 31.2 frames

#® Average Right Front to Right Rear = 11.4 frames

w

9

1.2
312 _ 974

N

L -
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Coupled Cell Theory

# input sets and input isomorphisms
#® network architecture = symmetry groupoids
# Dbalanced colorings and synchrony subspaces

#® quotient networks

Stewart, G., and Pivato (2003); G., Stewart, and Torok (2004)

o -
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Asymmetric Three-Cell Network
- -

L3 1 = f(r1,22,73)
/ \ jj? — f(x27$17$3)
@4’@ 3 = g(x3,71)

® Y ={x:x1 =z} Is flow-invariant

Synchrony spaces exist in networks without symmetry

1 = f(xy,21,23)

Restrict equations 71,22 t0 Y
f(x1, 21, 23)

9

o -
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Asymmetric Three-Cell Network
- -

L3 1 = f(r1,22,73)
/ \ j32 — f(x27$17$3)
@4’@ 3 = g(x3,71)

® Y ={x:x1 =z} Is flow-invariant

Synchrony spaces exist in networks without symmetry

1 = f(xy,21,23)

Restrict equations 71,22 t0 Y ,
ro = f(flfl,llfl,ﬂfg)

® Cells 1 and 2 are identical within the network

o -
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Input Sets

o .

® Input set of cell 5: Cell j & cells i that connect to

- N
O- @ OO0 ©

# Key idea: cells 1, 2 have isomorphic input sets

o -
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Coupled Cell Network Definition
c=1{1,...,N} -

# An equivalence relation on cells

-

® A setof cells

# Each cell ¢ has input terminal 1(c) with incoming arrows
# An equivalence relation on arrows

# Equivalent arrows have equivalent tail and head cells

A coupled cell network is represented by a graph

#® For each class of cells choose node symbol (), [, A
L # For each class of arrows choose arrow symbol —, =, ~~ J
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o

Symmetry Groupoid
-

An input isomorphism IS a bijection 5 : I(c¢) — I(d) that
preserves arrow types

B = set of all input isomorphisms; B is a groupoid
Groupoid is like group; but product not always defined

Coupled cell systems: ODEs that commute with B

-
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Synchrony Subspaces

o .

# ColorcellsinC (red, blue, maroon, etc)

A={x:z.=2x5 whenever candd have same color}

\_Stewart, G., and Pivato (2003) J
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Synchrony Subspaces

o .

# ColorcellsinC (red, blue, maroon, etc)
A={x:x.=x45 whenever candd have same color}

® Synchrony subspace If A is always flow invariant

A Is coupled cell analog of fixed-point subspace

LStewart, G., and Pivato (2003) J
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Synchrony Subspaces

o .

# ColorcellsinC (red, blue, maroon, etc)
A={x:x.=x45 whenever candd have same color}

® Synchrony subspace If A is always flow invariant

A Is coupled cell analog of fixed-point subspace

# Coloring is balanced if every pair of cells with same color
has a color preserving input isomorphism

LStewart, G., and Pivato (2003) J
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Synchrony Subspaces

o .

# ColorcellsinC (red, blue, maroon, etc)
A={x:x.=x45 whenever candd have same color}

® Synchrony subspace If A is always flow invariant

A Is coupled cell analog of fixed-point subspace

# Coloring is balanced if every pair of cells with same color
has a color preserving input isomorphism

® Theorem: synchrony subspace <—> balanced

LStewart, G., and Pivato (2003) J

Coupled Cell Systems — p.23/3f



Example: Lattice Dynamical Systems

~» Consider square lattice with nearest neighbor coupling

® Form a two-color balanced relation

o

-

o

-

o

-

o

-

o

-

o

-

<0

-

0

-

e I R I e S R I P R

— O—0—0—0—0—0-—0—0-—

o

-

Pn

-

o

-

o

-

-

-

Pn

<

-

o

<

-

e OO0 O==0<0==0

-

o

-

o

o

o

-

o

0

-

0

o0

0

0

o0

0

e I R I e N I P R

— O—0—0—0—0—0-—0—0-—

o

-

Pn

-

o

-

o

-

o

-

-

o

-

o

o

-

<

e OO0 0==0 =

o

-

-

-

oo

o

oo

o

>

oo

oo

o

<o

<o

0

-

0

o0

0

0

o0

-

-

-

-

-

Pn

<

-

Pn

<

-

lo—c

lo—c

0

0

0

o0

-0

0

o0

0

® Each black cell connected to two black and two white

Each white cell connected to two black and two white

-
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Lattice Dynamical Systems (2)

fThere are eight isolated balanced two-colorings on T
square lattice with nearest neighbor coupling

LWang and G. (2004)

indicates nonsymmetric solution J
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Lattice Dynamical Systems (3)

o -

o There are two infinite families of balanced two-colorings

Coupled Cell Systems — p.26/3f



Lattice Dynamical Systems (3)
B -

o There are two infinite families of balanced two-colorings

# A continuum of different synchrony subspaces exist

m

ay

2 -rl'r. -rrr.

e




Lattice Dynamical Systems (4)
- o

# Up to symmetry these are all balanced two-colorings
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Lattice Dynamical Systems (4)
- o

# Up to symmetry these are all balanced two-colorings

#® Lemma: Each balanced two coloring leads to equilibria
In one parameter bifurcations

o -
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Lattice Dynamical Systems (4)
- o

# Up to symmetry these are all balanced two-colorings

#® Lemma: Each balanced two coloring leads to equilibria
In one parameter bifurcations

# Architecture is important

No infinite families with next nearest neighbor coupling

o -
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Hexagonal Lattice: NNN Coupling

There are 13 two-color patterns of synchrony in hex lattice
with nearest and next nearest neighbor coupling
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Three-Cell Feed-Forward Network

g(x1,21) [ a+pB 0 O ]
g(ZCQ,iUl) J = B o 0
g($3,$2) i 0 ,8 o

-

o)1) »

o = linearized internal B = linearized coupling




-

Vvv vvv

0.5
0 1 90 100
1 T T T T T T T
0.5 H
< 0r
-0.5[ q
1 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

zo(t) ~ A2

z2(t),

A N A A A v\ 0 Avﬂwvﬂv

Three-Cell Feed-Forward Network

= g(x1,21) -oz—i—ﬁ 0 0

s () () = = s Im| e
=  g(z3,2) 0 B a |

o = linearized internal B = linearized coupling

#® Network supports solution by Hopf bifurcation where
z1(t) equilibrium

z3(t) time periodic

0.4
A )

e
"2V VLIV IVYVEVE VT VL LTV TV VY L
0.4 —

T
(I T T N A (O I I |

| 11 |
nnEnnm

wg(t) ~ \L/6 J
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Three-Cell Feed-Forward Network (2)
-

#® Network supports solution where T

z1(t) equilibrium, x5(t) time periodic, =5(1) quasiperiodic

111111111

111111111

111111111




Patterns in Hyperbolic Equilibria
- ,

® Letzy=(z7,...,2%) be a hyperbolic equilibrium

=

Colorcells ¢,d samecolor iff 2z =2

A={x:2.,=z4 If ¢ and d have same color}

\_G., Stewart, and Torok (2003) J
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Patterns in Hyperbolic Equilibria
- : -

® Letzy=(z7,...,2%) be a hyperbolic equilibrium
Colorcells ¢,d samecolor iff 2z =2

A={x:z.=24 If ¢ and d have same color}

o Coloring is rigid if perturbed hyperbolic equilibria in A

LG., Stewart, and Torok (2003) J
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Patterns in Hyperbolic Equilibria
- 0 o

® Letzy=(z7,...,2%) be a hyperbolic equilibrium
Colorcells ¢,d samecolor iff 2z =2
A={zx:z.=x4 If ¢ and d have same color}

o Coloring is rigid if perturbed hyperbolic equilibria in A

® Theorem: Coloringis rigid iff balanced

\_G., Stewart, and Torok (2003) J
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Patterns in Hyperbolic Equilibria
- 0 o

® Letzy=(z7,...,2%) be a hyperbolic equilibrium
Colorcells ¢,d samecolor iff 2z =2
A={x:z.=24 If ¢ and d have same color}

o Coloring is rigid if perturbed hyperbolic equilibria in A

® Theorem: Coloringis rigid iff balanced

o Conjecture: Hyperbolic periodic solutions can have rigid
phase shift synchrony only when there is a symmetric
qguotient network

LG., Stewart, and Torok (2003) J
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Quotient Cell Systems

o .

# Given cell network C and balanced coloring
# Define quotient network Cyq by

Cow=A{c:celC}=C/<

Quotient cells equivalent if C cells equivalent
Quotient arrows are projections of C arrows
Quotient arrows equivalent if C arrows equivalent

e o o ©

® [hm: C-admissible DE restricted to Ay IS Coq-admissible

Every C.,-admissible DE on A, lifts to C-admissible DE

-

Coupled Cell Systems — p.32/3f
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Asymmetric Five-Cell Network

: ﬂ /i .
LI A

# Quotient is bidirectional 3-cell ring with D3 symmetry

-

# One-parameter synchrony-breaking Hopf yields

0.5 T T
of |
-0.5 L L
) 5 10 15
0.5 T T
0 W WW
05 ‘ ‘
) 5 10 15
05 : ;
of |
05 ‘ ‘
) 5 10 15
05 : ;
05 ‘ s
) 5 10 15
05 : ;
\ P ~ ~ N\ ~ A~
0 /\ / o\ / N\
\— o —" \_— _— " " 1
0 5 L L
) 5 10 15
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Two Color Quotient Networks

=

f # Every balanced two coloring has two-cell quotient




Two-Color Branching Lemma

. ‘@
my

{=Fk1+myp =ky+mo

:i?l — g(fb‘l,fl,...,ityfg,...,LE%)
P o
Ty = 9(332,332,...,332,331,...,Qfl)
N——— ——
ko ma2
r1 = xo IS flow-invariant

# Let a = linearized internal and 3 = linearized coupling

Jacobian =

a—+ ki3
ma 3

mi 3
a+ ko f3 |

-
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Two-Color Branching Lemma

. ‘@
my

{=Fk1+myp =ky+mo

:i?l — g(fb‘l,fl,...,ityfg,...,LE%)
P o
Ty = 9(332,332,...,332,331,...,Qfl)
N——— ——
ko ma2
r1 = xo IS flow-invariant

# Let a = linearized internal and 3 = linearized coupling

Jacobian =

a—+ ki3
ma 3

mi 3
a+ ko f3 |

® Eigenvaluesare a+ /5 ((1,1)) and a + (k1 + ko — 0)3

-
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Two-Color Branching Lemma

k, k j?1 — g(l'l,.ffl,...,lC;,i\CQ,...,LC%)
P i

R ‘@ j?g — g(:BQ,ZCQ,...,SCQ,xl,...,:131)
) m, k2 m2

= Fk1+mq = ko +my r1 = xo is flow-invariant

# Let a = linearized internal and 3 = linearized coupling

a+ kg mB
mo 3 o+ ko3 |

Jacobian =

® Eigenvaluesare a+ /5 ((1,1)) and a + (k1 + ko — 0)3

L #® Vary a — get synchrony-breaking bifurcation J
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Two-Color Synchrony-Breaking Hopf

-

.

-

# Unique synchrony-breaking Hopf bifurcation
# Periodic sol'ns are synchronous on cells of same color
# Near bifurcation — to first order

» Opposite color cells ~ one-half period out of phase
» Ratio of amplitudes of opposite color cells ~ m/ms

0

m1:2 m2:1
L

Coupled Cell Systems — p.36/3f




	Coupled Cell Systems
	Two Identical Cells
	Symmetry Overview
	Fixed-Point Subspaces
	Symmetry and Synchrony
	Spatio-Temporal Symmetries
	$3$-Cell Directed Ring: Rotating Wave
	Another Three-Cell System
	Another Three-Cell System (2)
	Quadrupedal Gaits
	Gait Symmetries
	Central Pattern Generators (CPG)
	Four Cells Do Not Suffice
	Advanced Gait Modeling
	Primary Gaits: Red {$H=Gamma =Z _4(omega )	imes
Z _2(kappa )$}
	The Jump
	Coupled Cell Theory
	Asymmetric Three-Cell Network
	Input Sets
	Coupled Cell Network Definition
	Symmetry Groupoid
	Synchrony Subspaces
	Example: Lattice Dynamical Systems
	Lattice Dynamical Systems (2)
	Lattice Dynamical Systems (3)
	Lattice Dynamical Systems (4)
	Hexagonal Lattice: NNN Coupling
	Three-Cell Feed-Forward Network
	Three-Cell Feed-Forward Network (2)
	Patterns in Hyperbolic Equilibria
	Quotient Cell Systems
	Asymmetric Five-Cell Network
	Two Color Quotient Networks
	Two-Color Branching Lemma
	Two-Color Synchrony-Breaking Hopf

