Coupled Cell Systems

Martin Golubitsky University of Houston

Coupled Cell Systems

Martin Golubitsky University of Houston

lan Stewart Warwick

Luciano Buono Montreal Jim Collins BU Matt Nicol Houston Marcus Pivato Trent Andrew Török Houston Yunjiao Wang Houston

Two Identical Cells

• $\sigma(x_1, x_2) = (x_2, x_1)$ is a symmetry

Two Identical Cells

•
$$\sigma(x_1, x_2) = (x_2, x_1)$$
 is a symmetry

• Fix(σ) = { $x_1 = x_2$ } is flow invariant Synchrony is a robust phenomenon

Two Identical Cells

•
$$\sigma(x_1, x_2) = (x_2, x_1)$$
 is a symmetry

- Fix $(\sigma) = \{x_1 = x_2\}$ is flow invariant Synchrony is a robust phenomenon
- Time-periodic solutions can exist where two cells oscillate a half-period out of phase

$$x_2(t) = x_1(t + \frac{1}{2})$$

Basic questions for symmetric differential equations
 (a) What is meant by symmetry for a DiffEq x = f(x)?
 (b) What kinds of symmetry can solutions have?
 (c) How does sol'n symmetry change with parameters?

- Basic questions for symmetric differential equations
 (a) What is meant by symmetry for a DiffEq x = f(x)?
 (b) What kinds of symmetry can solutions have?
 (c) How does sol'n symmetry change with parameters?
- (a) Symmetry: $\gamma(sol'n) = sol'n \iff f(\gamma x) = \gamma f(x)$

- Basic questions for symmetric differential equations
 (a) What is meant by symmetry for a DiffEq x = f(x)?
 (b) What kinds of symmetry can solutions have?
 (c) How does sol'n symmetry change with parameters?
- (a) Symmetry: $\gamma(\text{sol'n}) = \text{sol'n} \iff f(\gamma x) = \gamma f(x)$
- (b,c) Symmetry group Γ is a modeling assumption Γ is specified in advance

- Basic questions for symmetric differential equations
 (a) What is meant by symmetry for a DiffEq x = f(x)?
 (b) What kinds of symmetry can solutions have?
 (c) How does sol'n symmetry change with parameters?
- (a) Symmetry: $\gamma(\text{sol'n}) = \text{sol'n} \iff f(\gamma x) = \gamma f(x)$
- (b,c) Symmetry group Γ is a modeling assumption Γ is specified in advance
- Solution symmetry depends on type of solution

- Basic questions for symmetric differential equations
 (a) What is meant by symmetry for a DiffEq x = f(x)?
 (b) What kinds of symmetry can solutions have?
 (c) How does sol'n symmetry change with parameters?
- (a) Symmetry: $\gamma(\text{sol'n}) = \text{sol'n} \iff f(\gamma x) = \gamma f(x)$
- (b,c) Symmetry group Γ is a modeling assumption Γ is specified in advance
- Solution symmetry depends on type of solution
- Related: Network architecture is modeling assumption

Fixed-Point Subspaces

- $\Sigma \subset \Gamma$ is a subgroup
- Fixed-point subspace: $Fix(\Sigma) = \{x : \sigma x = x \quad \forall \sigma \in \Sigma\}$
- $Fix(\Sigma)$ is flow-invariant:

$$\sigma f(x) = f(\sigma x) = f(x)$$

Symmetry and Synchrony

Coupled cell systems described by graph

Output from different cells can be compared

Symmetry and Synchrony

Coupled cell systems described by graph

Output from different cells can be compared

• Fixed-point subspaces are synchrony subspaces Example: $\sigma = (2 \ 4)$ $x_2(0) = x_4(0) \Longrightarrow x_2(t) = x_4(t)$

Symmetry and Synchrony

Coupled cell systems described by graph

Output from different cells can be compared

- Fixed-point subspaces are synchrony subspaces Example: $\sigma = (2 \ 4)$ $x_2(0) = x_4(0) \Longrightarrow x_2(t) = x_4(t)$
- Question: Are all synchrony spaces fixed-point spaces? Answer: No

Spatio-Temporal Symmetries

Question: Assume Γ is finite

How are spatiotemporal symmetries of time-periodic solutions described in Γ -symmetric systems

Spatio-Temporal Symmetries

Question: Assume Γ is finite

How are spatiotemporal symmetries of time-periodic solutions described in Γ -symmetric systems

- Let x(t) be a time-periodic solution
 - $K = \{ \gamma \in \Gamma : \gamma x(t) = x(t) \}$ space symmetries
 - $H = \{\gamma \in \Gamma : \gamma\{x(t)\} = \{x(t)\}\}$ spatiotemporal symm's

Spatio-Temporal Symmetries

Question: Assume Γ is finite

How are spatiotemporal symmetries of time-periodic solutions described in Γ -symmetric systems

- Let x(t) be a time-periodic solution
 - $K = \{ \gamma \in \Gamma : \gamma x(t) = x(t) \}$ space symmetries
 - $H = \{\gamma \in \Gamma : \gamma\{x(t)\} = \{x(t)\}\}$ spatiotemporal symm's

Facts:

- $h \in H \Longrightarrow \theta \in \mathbf{S}^1$ such that $hx(t) = x(t + \theta)$
- H/K is cyclic

3-Cell Directed Ring: Rotating Wave

How do spatio-temporal symmetries manifest themselves in coupled cell systems? Answer: phase synchrony

• One-dimensional internal dynamics. Phase space is \mathbf{R}^3

•
$$K = 1; H = \mathbf{Z}_3$$

3

2

Another Three-Cell System

$$\dot{x}_1 = f(x_1, x_2) \dot{x}_2 = g(x_2, x_1, x_3) \qquad g(x_2, x_1, x_3) = g(x_2, x_3, x_1) \dot{x}_3 = f(x_3, x_2)$$

Another Three-Cell System

$$\dot{x}_1 = f(x_1, x_2)$$

$$\dot{x}_2 = g(x_2, x_1, x_3) \qquad g(x_2, x_1, x_3) = g(x_2, x_3, x_1)$$

$$\dot{x}_3 = f(x_3, x_2)$$

• Symmetry: $\sigma(x_1, x_2, x_3) = (x_3, x_2, x_1)$ Fix $(\sigma) = \{x_1 = x_3\}$ is flow-invariant

Another Three-Cell System

$$\dot{x}_1 = f(x_1, x_2)$$

$$\dot{x}_2 = g(x_2, x_1, x_3) \qquad g(x_2, x_1, x_3) = g(x_2, x_3, x_1)$$

$$\dot{x}_3 = f(x_3, x_2)$$

• Symmetry:
$$\sigma(x_1, x_2, x_3) = (x_3, x_2, x_1)$$

Fix $(\sigma) = \{x_1 = x_3\}$ is flow-invariant

• Out-of-phase periodic solutions ($H = \mathbf{Z}_2(\sigma)$, $K = \mathbf{1}$):

$$\sigma X(t) = X\left(t + \frac{1}{2}\right)$$

 $x_3(t) = x_1\left(t + \frac{1}{2}\right)$ and $x_2(t) = x_2\left(t + \frac{1}{2}\right)$

Another Three-Cell System (2)

Quadrupedal Gaits

Black disk indicates time when foot hits ground

Trot

Thanks to: Sue Morris at http://www.classicaldressage.co.uk

G., Stewart, Buono, and Collins (1999, 2000)

Gait Symmetries

Collins and Stewart (1993)

Assumption: There is a network in the nervous system that produces the characteristic rhythms of each gait

- Assumption: There is a network in the nervous system that produces the characteristic rhythms of each gait
- OPG is network of neurons; neurons modeled by ODEs

- Assumption: There is a network in the nervous system that produces the characteristic rhythms of each gait
- CPG is network of neurons; neurons modeled by ODEs
- Locomotor CPG's modeled by coupled cell systems

Kopell and Ermentrout (1986, 1988, 1990); Rand, Cohen, and Holmes (1988); etc.

- Assumption: There is a network in the nervous system that produces the characteristic rhythms of each gait
- OPG is network of neurons; neurons modeled by ODEs
- Locomotor CPG's modeled by coupled cell systems

Kopell and Ermentrout (1986, 1988, 1990); Rand, Cohen, and Holmes (1988); etc.

Design simplest network to produce walk, trot, and pace

- Assumption: There is a network in the nervous system that produces the characteristic rhythms of each gait
- OPG is network of neurons; neurons modeled by ODEs
- Locomotor CPG's modeled by coupled cell systems

Kopell and Ermentrout (1986, 1988, 1990); Rand, Cohen, and Holmes (1988); etc.

Design simplest network to produce walk, trot, and pace

Four Cells Do Not Suffice

- $\Gamma =$ symmetry group of network
- Network produces walk. There is a four-cycle

 $(1\ 3\ 2\ 4)\in\Gamma$

Four-cycle permutes pace to trot

PACE

TROT

CPG cannot be modeled by four-cell network where each cell gives rhythmic pulsing to one leg

Use symmetries to construct coupled cell network.

● Use symmetries to construct coupled cell network.
 1) walk ⇒ four-cycle ω in symmetry group

- Use symmetries to construct coupled cell network.
 - 1) walk \implies four-cycle ω in symmetry group
 - 2) pace or trot \implies transposition κ in symmetry group

- Use symmetries to construct coupled cell network.
 - 1) walk \implies four-cycle ω in symmetry group
 - 2) pace or trot \implies transposition κ in symmetry group
 - 3) Simplest network

- Use symmetries to construct coupled cell network.
 - 1) walk \implies four-cycle ω in symmetry group
 - 2) pace or trot \implies transposition κ in symmetry group
 - 3) Simplest network

• $\Gamma = \mathbf{Z}_4(\omega) \times \mathbf{Z}_2(\kappa)$ is abelian

Primary Gaits: $H = \Gamma = \mathbf{Z}_4(\omega) \times \mathbf{Z}_2(\kappa)$

K	Γ/K	Phase Diagram	Gait	
Г	1	$\left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right)$	pronk	
$<\omega>$	\mathbf{Z}_2	$\left(\begin{array}{cc} 0 & \frac{1}{2} \\ 0 & \frac{1}{2} \end{array}\right)$	pace	
$<\kappa\omega>$	\mathbf{Z}_2	$\left(\begin{array}{ccc} \frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{array}\right)$	trot	
$<\kappa,\omega^2>$	\mathbf{Z}_2	$\left(\begin{array}{cc} 0 & 0\\ \frac{1}{2} & \frac{1}{2} \end{array}\right)$	bound	
$<\kappa\omega^2>$	\mathbf{Z}_4	$ \left(\begin{array}{ccc} \pm\frac{1}{4} & \pm\frac{3}{4} \\ 0 & \frac{1}{2} \end{array}\right) $	$walk^{\pm}$	
$<\kappa>$	\mathbf{Z}_4	$\left(\begin{array}{cc} 0 & 0 \\ \pm \frac{1}{4} & \pm \frac{1}{4} \end{array}\right)$	jump±	

Primary gaits occur by Hopf bifurcation from stand

The Jump

- Average Right Rear to Right Front = 31.2 frames
- Average Right Front to Right Rear = 11.4 frames

$$\frac{31.2}{11.4} = 2.74$$

Coupled Cell Theory

- input sets and input isomorphisms
- network architecture = symmetry groupoids
- balanced colorings and synchrony subspaces
- quotient networks

Stewart, G., and Pivato (2003); G., Stewart, and Török (2004)

Asymmetric Three-Cell Network

• $Y = \{x : x_1 = x_2\}$ is flow-invariant

Synchrony spaces exist in networks without symmetry

Restrict equations \dot{x}_1, \dot{x}_2 to Y

$$\dot{x}_1 = f(x_1, x_1, x_3)$$

 $\dot{x}_2 = f(x_1, x_1, x_3)$

Asymmetric Three-Cell Network

• $Y = \{x : x_1 = x_2\}$ is flow-invariant

Synchrony spaces exist in networks without symmetry

Restrict equations \dot{x}_1, \dot{x}_2 to Y

$$\dot{x}_1 = f(x_1, x_1, x_3)$$

 $\dot{x}_2 = f(x_1, x_1, x_3)$

Cells 1 and 2 are identical within the network

Input Sets

Input set of cell j: Cell j & cells i that connect to j

Key idea: cells 1, 2 have isomorphic input sets

Coupled Cell Network Definition

- A set of *cells* $\mathcal{C} = \{1, \dots, N\}$
- An equivalence relation on cells
- Each cell c has input terminal I(c) with incoming arrows
- An equivalence relation on arrows
- Equivalent arrows have equivalent tail and head cells

A coupled cell network is represented by a graph

- For each class of cells choose node symbol $\bigcirc, \Box, \triangle$
- For each class of arrows choose arrow symbol \rightarrow , \Rightarrow , \rightsquigarrow

Symmetry Groupoid

- An input isomorphism is a bijection $\beta : I(c) \rightarrow I(d)$ that preserves arrow types
- **\mathcal{B}_G** = set of all input isomorphisms; \mathcal{B}_G is a groupoid
- Groupoid is like group; but product not always defined
- Coupled cell systems: ODEs that commute with \mathcal{B}_G

• Color cells in C (red, blue, maroon, etc)

 $\Delta = \{ x : x_c = x_d \quad \text{whenever} \quad c \text{ and } d \quad \text{have same color} \}$

Stewart, G., and Pivato (2003)

• Color cells in C (red, blue, maroon, etc)

 $\Delta = \{ x : x_c = x_d \quad \text{whenever} \quad c \text{ and } d \quad \text{have same color} \}$

Synchrony subspace if Δ is always flow invariant

 Δ is coupled cell analog of fixed-point subspace

Stewart, G., and Pivato (2003)

• Color cells in C (red, blue, maroon, etc)

 $\Delta = \{ x : x_c = x_d \quad \text{whenever} \quad c \text{ and } d \quad \text{have same color} \}$

Synchrony subspace if Δ is always flow invariant

 Δ is coupled cell analog of fixed-point subspace

Coloring is balanced if every pair of cells with same color has a color preserving input isomorphism

• Color cells in C (red, blue, maroon, etc)

 $\Delta = \{ x : x_c = x_d \quad \text{whenever} \quad c \text{ and } d \quad \text{have same color} \}$

Synchrony subspace if Δ is always flow invariant

 Δ is coupled cell analog of fixed-point subspace

- Coloring is balanced if every pair of cells with same color has a color preserving input isomorphism
- Theorem: synchrony subspace balanced

Stewart, G., and Pivato (2003)

Example: Lattice Dynamical Systems

- Consider square lattice with nearest neighbor coupling
- Form a two-color balanced relation

Each black cell connected to two black and two white Each white cell connected to two black and two white

Stewart, G. and Nicol (2003)

Lattice Dynamical Systems (2)

There are eight isolated balanced two-colorings on square lattice with nearest neighbor coupling

Wang and G. (2004)

indicates nonsymmetric solution

Lattice Dynamical Systems (3)

There are two infinite families of balanced two-colorings

/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/
	/	/		/	/	/		/	/	/	/	/	/		/
															/
		/		/			/	/	/	/	/			/	/
		/	/	/		/	/	/	/	/	/	/	/	/	/
	/	/	/		/	/	/			/	/		/	/	/
/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/
2	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/
	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/

Lattice Dynamical Systems (3)

There are two infinite families of balanced two-colorings

A continuum of different synchrony subspaces exist

Lattice Dynamical Systems (4)

Up to symmetry these are all balanced two-colorings

Lattice Dynamical Systems (4)

Up to symmetry these are all balanced two-colorings

Lemma: Each balanced two coloring leads to equilibria in one parameter bifurcations

Lattice Dynamical Systems (4)

Up to symmetry these are all balanced two-colorings

Lemma: Each balanced two coloring leads to equilibria in one parameter bifurcations

Architecture is important

No infinite families with next nearest neighbor coupling

Hexagonal Lattice: NNN Coupling

There are 13 two-color patterns of synchrony in hex lattice with nearest and next nearest neighbor coupling

Three-Cell Feed-Forward Network

 $\alpha =$ linearized internal $\beta =$ linearized coupling

Three-Cell Feed-Forward Network

 $\alpha =$ linearized internal $\beta =$ linearized coupling

Network supports solution by Hopf bifurcation where $x_1(t)$ equilibrium $x_2(t), x_3(t)$ time periodic

Three-Cell Feed-Forward Network (2)

Network supports solution where

 $x_1(t)$ equilibrium, $x_2(t)$ time periodic, $x_3(t)$ quasiperiodic

• Let $x_0 = (x_1^0, \dots, x_N^0)$ be a hyperbolic equilibrium Color cells c, d same color iff $x_c^0 = x_d^0$ $\Delta = \{x : x_c = x_d \text{ if } c \text{ and } d \text{ have same color}\}$

G., Stewart, and Török (2003)

- Let $x_0 = (x_1^0, \dots, x_N^0)$ be a hyperbolic equilibrium Color cells c, d same color iff $x_c^0 = x_d^0$ $\Delta = \{x : x_c = x_d \text{ if } c \text{ and } d \text{ have same color}\}$
- Coloring is rigid if perturbed hyperbolic equilibria in Δ

- Let $x_0 = (x_1^0, \dots, x_N^0)$ be a hyperbolic equilibrium Color cells c, d same color iff $x_c^0 = x_d^0$ $\Delta = \{x : x_c = x_d \text{ if } c \text{ and } d \text{ have same color}\}$
- Coloring is rigid if perturbed hyperbolic equilibria in Δ
- Theorem: Coloring is rigid iff balanced

• Let $x_0 = (x_1^0, \dots, x_N^0)$ be a hyperbolic equilibrium Color cells c, d same color iff $x_c^0 = x_d^0$ $\Delta = \{x : x_c = x_d \text{ if } c \text{ and } d \text{ have same color}\}$

• Coloring is rigid if perturbed hyperbolic equilibria in Δ

- Theorem: Coloring is rigid iff balanced
- Conjecture: Hyperbolic periodic solutions can have rigid phase shift synchrony only when there is a symmetric quotient network
- G., Stewart, and Török (2003)

Quotient Cell Systems

- Given cell network C and balanced coloring \bowtie
- **Define** *quotient network* \mathcal{C}_{\bowtie} by
 - $\mathbf{C}_{\bowtie} = \{ \overline{c} : c \in \mathcal{C} \} = \mathcal{C} / \bowtie$
 - Quotient cells equivalent if C cells equivalent
 - Quotient arrows are projections of C arrows
 - Quotient arrows equivalent if C arrows equivalent
- Thm: C-admissible DE restricted to Δ_{\bowtie} is C_{\bowtie} -admissible DE on Δ_{\bowtie} lifts to C-admissible DE
- G., Stewart, and Török (2003)

Asymmetric Five-Cell Network

- Quotient is bidirectional 3-cell ring with D₃ symmetry
- One-parameter synchrony-breaking Hopf yields

Two Color Quotient Networks

Every balanced two coloring has two-cell quotient

Two-Color Branching Lemma

 $\ell = k_1 + m_1 = k_2 + m_2$

 $x_1 = x_2$ is flow-invariant

• Let α = linearized internal and β = linearized coupling Jacobian = $\begin{bmatrix} \alpha + k_1 \beta & m_1 \beta \\ m_2 \beta & \alpha + k_2 \beta \end{bmatrix}$

Two-Color Branching Lemma

 $\ell = k_1 + m_1 = k_2 + m_2$

 $x_1 = x_2$ is flow-invariant

• Let α = linearized internal and β = linearized coupling Jacobian = $\begin{bmatrix} \alpha + k_1 \beta & m_1 \beta \\ m_2 \beta & \alpha + k_2 \beta \end{bmatrix}$

• Eigenvalues are $\alpha + \ell \beta$ ((1,1)) and $\alpha + (k_1 + k_2 - \ell)\beta$

Two-Color Branching Lemma

 $\ell = k_1 + m_1 = k_2 + m_2$

 $x_1 = x_2$ is flow-invariant

• Let α = linearized internal and β = linearized coupling Jacobian = $\begin{bmatrix} \alpha + k_1 \beta & m_1 \beta \\ m_2 \beta & \alpha + k_2 \beta \end{bmatrix}$

• Eigenvalues are $\alpha + \ell \beta$ ((1,1)) and $\alpha + (k_1 + k_2 - \ell)\beta$

Solution Vary α — get synchrony-breaking bifurcation

Two-Color Synchrony-Breaking Hopf

- Unique synchrony-breaking Hopf bifurcation
- Periodic sol'ns are synchronous on cells of same color
- Near bifurcation to first order
 - Opposite color cells \approx one-half period out of phase
 - Ratio of amplitudes of opposite color cells $\approx m_1/m_2$

