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• Adaptive neural coding

• Example: the fly visual system

• Long timescales: a phenomenological
model

• Short timescales: mechanisms
• functional description of the neural computation

• Adaptation through intrinsic properties

The plan
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Adaptation

The Basis of Sensation, Adrian (1929)



• prevents a neuron from continuing to respond
to repetitive stimuli  (Adrian)

• redundancy reduction (Barlow and Attneave)

• increases neuron’s dynamic range

• improves information transmission

• should consider adaptation not to a sustained
stimulus but to a changing ensemble of stimuli

Functional role of adaptation 
for information processing



Coding: adapting to a distribution

‡ Input/output curve
which depends on
the stimulus distribution



Different aspects of adaptation 
are relevant for information processing

• rate accommodation
• changes in the neural input/output relation
• changes in the neuron’s feature selectivity



Example: contrast
adaptation in the

retina

Smirnakis et al., Nature (1997)



H1: a large identified
motion-sensitive neuron in the 
fly lobula plate



Slow rate adaptation

Periodically switch stimulus variance 
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Slow rate adaptation



Fairhall, Bialek, Lewen and de
Ruyter,  “Efficiency and ambiguity
in an adaptive neural code”,
Nature (2001)

Slow rate adaptation

Periodically switch stimulus variance



Slow rate adaptation over tens of seconds
Timescale scales with timescale of the experiment



• stimulus is reduced to 
its projection onto the 
spike triggered average

Constructing the neuron’s input/output
relation

The spike triggered average

..changes with variance



Fast adaptation of input/output relations

• adaptation of filters and I/O
relations on timescales of
~100ms: at statistical limits

• Similar results in the retina
(Baccus and Meister, 2002)

• dynamical rescaling to
variance of distribution



Adaptation preserves information transmission rate.



The dynamics of the rate envelope is independent 
of the rescaling of the input/output relations.



Disambiguating the variance: 
the interspike interval distribution

Fairhall, Bialek, Lewen and de
Ruyter,  “Efficiency and ambiguity
in an adaptive neural code”,
Nature (2001)





The rate dynamics: what’s going
on

• Recall: no fixed timescale
• Consistent with 
   power-law adaptation

Suggests that rate behaves
like
fractional differentiation
of the log-variance envelope

Thorson and Biederman-Thorson,
Science (1974)

A. Cockroach leg mechanoreceptor, to spinal distortion
B. Spider slit sensillum, to 1200 Hz sound
C. Stretch receptor of the crayfish
D. Limulus eccentric-cell, to increase in light intensity



Fractional differentiation

power-law response
to a step:

scaling “adaptive” response
to a square wave:

Fourier representation  (iw)a  : 
each frequency component scaled by wa 

and with phase shifted by a constant phase ia ‡ ap  
 



Linear analysis agrees

• Variance envelope ~ exp[sin t/T]

  for a range of frequencies 1/T 

• Stimulate with a set of sine waves
at different frequencies

T = 30s, 60s, 90s

phase shift



Fits very well

From sinusoid experiments, find exponent a ~ 0.2

Two-state switching Three-state switching



So it’s a fractional differentiator…

• connects with ‘universal’ power-law behaviour of receptors

• unusual to see this in a “higher computation”

• functional interpretation: whitening stimulus spectrum (van Hateren)

• introduces long history dependence but linear: invertible/decodable

• emphasizes rapid changes and extends dynamic range, but does not
throw out information in the steady state

• what’s the mechanism?  Some ideas..



Possible mechanisms for fast statistical adaptation:
intrinsic neural properties



Functional neural computation
Start from biophysical/dynamical systems description
or from experimental data;  
want a functional characterisation of the neural computation.
Basic idea:
feature detection followed by a nonlinearity

Perceptron (Rosenblatt); LN model; dimensionality reduction (Bialek et al.)



Spiking surface in stimulus space



A given time-dependent stimulus is a trajectory in this space



A spike..

What happens after a spike? (Aguera y Arcas, Fairhall and Bialek 2000)



The spike-conditional distribution



The spike-conditional distribution



The STA is the centroid



Covariance methods define a linear subspace which fits 
a hyperplane to the distribution

Brenner et al., Aguera y Arcas et al., Bialek et al., Schwartz et al., Rust et al., Petersen et al.



Spiking surface generally is curved

Stimulus
dimensions with a
nonempty normal
intersection with the
spiking surface are
the relevant feature
space



Different statistical ensembles explore the surface differently

.. changes the STA, eigenmodes, input/output relation.. 



Not so esoteric:
the Hodgkin-Huxley
model

Spiking on curved subspaces



Spectrum is still high dimensional, although most of
these modes are not spike related. (more later)



a simple attempt to capture the curvature 
recovers 90% of the information in isolated spikes

Aguera y Arcas et al., Neural Computation 2003

Beyond covariance



Helps to understand
where the banana
is coming from:
slice it up

Advanced:
positive dt

Retarded:
negative dt



Mean STA consists of a whole family
of features depending on the local variance

Deviations from the mean are scaling;
explains high dimensionality



(not surprisingly) HH has instantaneous “feature adaptation”

But: no learning and no long timescales



Intrinsic nonlinearities may be responsible for some
forms of adaptation to the stimulus distribution

There are experimental examples where the form
of the adapting filter seems to maximise information 
transmission (van Hateren).
 
“Designability” of spiking surfaces?



White noise analysis can introduce confounds 
that look like adaptation.

Testbed: leaky integrate and fire. 
By definition, ONE dimension/linear filter controls the spiking 
decision, the exponential. 

A good method should recover the exponential filter, independent of
the stimulus variance.

“Bare” white noise analysis is confounded by interactions between
spikes. (Aguera y Arcas et al., 2000)

Solution: use only isolated spikes. We are trying to capture what in
the stimulus is relevant for spiking, not the neuron’s internal state.  

Using isolated spikes introduces its own complications!
namely, high dimensionality. (nonGaussian prior)







Asymmetry of the question:
 What is the best reconstruction filter? (“taking the organism’s point
of view”)
vs.
 What is the best predictor of a spike? (learning a functional model
for spike generation from data).

Using covariance analysis on isolated spikes only, we are able to recover 
true, stimulus-invariant feature selection



Conclusions

• adaptation to stimulus statistics in the fly visual
system dynamically optimises information
transmission

• rate dynamics are almost perfectly described by
 fractional differentiation.

• adaptation-like behaviour arises from simple models
without “memory”

• intrinsic neural nonlinearities may be tuned to
support advantageous information processing
strategies





That’s all folks











isolated spike triggered covariance
spectrum



silence power diagnostic



silence modes



outstanding spike mode ÷



threshold-crossing mode


