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Outcome: measure of viral fitness (cts)

Predictors: amino acid sequence from
protease (codons 4 - 99) and
reverse transcriptase ( 38 - 223)

336 linked RC : PRO/RT records

HIV-1   Replication   Capacity





Problem Features / Methods Used

• Distinguished from standard regression problems by the nature of amino acid

sequence data:

– high dimensional (here 282 positions)

– unordered categorical covariates (amino acids)

– between-site dependence

– interactions anticipated

• Various techniques that have been applied:

– Artificial Neural Networks (Milik et al., 1998; Resch et al., 2001)

– Prediction Based Classification (Foulkes, DeGruttola, 2002).

– Tree-Structured Methods (Segal et al., 2001; Beerenwinkel et al., 2002).



Critique: LMs and ANNs

• Linear Models: Difficulties in interpretting linear combinations

of unordered categorical covariates.

Requires computing, examining, grouping indicator coefficients.

These proliferate when interactions required ⇒ fitting prohibitive.

• ANNs: Effective when high signal-to-noise ratio and prediction,

not interpretation, is the goal.

• Plots of connection weights are used to identify important sites

⇒ profound identifiability concerns.

• Devices for avoiding indicator encoding of amino acids:

use of biophysical properties (Milik et al., 1998) or

arbitrary numeric coding (Resch et al., 2001)

⇒ potential information loss, coding sensitive results.



Critique: TSMs

• Strengths of tree-structured methods:

1. exhaustively handle groups of amino acids;

2. can readily handle interactions,

3. concerns re inadequacies of non-smooth (piecewise-constant) (cf MARS)

response surface are moot with unordered categoric covariates,

4. readily provide multiple solutions – important in view of strong

between-position covariation for reverse transcriptase, approximately 40%

of all possible pairwise position correlations are simultaneously significant

(p < 0.01) using the likelihood ratio / permutation testing approach of

Bickel et al., (1996).

• Primary deficiency of tree-structured methods: modest prediction performance

compared with flexible methods (e.g., ANNs, SVMs).

• Solutions/refinements proposed: bagging, boosting, Random Forests.
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RT184, RT215 primary drug resistance
sites which are known to affect RC.

Naturally occurring polymorphisms??

RT178 sits on a loop that also holds two 
amino acids (D185/D186) critical for 
reverse transcriptase protein function: 
coordination of Mg 2+ needed for binding 
the template.





RT178 split primarily Isoleucine (I) versus 
Valine (V).
While both are hydrophobic, there are 
volumetric and hydrogen bonding 
opportunity differences that may force  a 
chain of structural changes along the loop 
containing RT185 and RT186.
A similar effect has been described for       
the drug resistance substitution M184V.
RT178 under HLA control.



On to Random Forests



Better the model fits, the more sound the inference

Standard models tend to fit poorly

Fit measured by prediction error (PE)

Substantial gains in PE can be achieved by using 
ensembles of (simple) predictors

Breiman



A random forest is a collection of tree predictors

h(x;θk), k = 1, . . . , K; θk iid random vectors.

For regression, the forest prediction is the

unweighted average over the collection: h̄(x).

As k →∞ the Law of Large Numbers ensures

EX,Y (Y−h̄(X))2 → EX,Y (Y−Eθh(X;θ))2 ≡ PE∗f

the forest prediction error.

Convergence implies forests don’t overfit.



Define average prediction error for a tree as

PE∗
t = EθEX,Y (Y − h(X;θ))2.

Assume EY = EXh(x;θ) ∀θ. Then PE∗
f ≤ ρ̄PE∗

t

where ρ̄ is weighted correlation between residuals

for independent θ
′
, θ

′′
.

The inequality pinpoints requirements for accurate

regression forests: low correlation between residuals

and low error trees. Further, forests decrease PE∗
t

by factor ρ̄ ⇒ the randomization injected strives

for low correlation.



• To keep error low, grow trees to maximum depth

– contols bias but not variance??

– variance control by ensemble averaging

• To keep correlation low randomize via

1. Grow each tree on a bootstrap sample.

2. Specify m ! p (number of covariates). At

each node select m covariates and pick the

best split based on these.

Bootstrapping allows for an internal (oob) test set

estimate of PE∗f to be carried along.



Empirically, RF proven to have very low PE∗
f .

Insensitive to only tuning parameter m. BUT...

Empirically, RF proven to have very low PE∗
f .

Insensitive to only tuning parameter m. BUT...
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Almost all UCI repository benchmark 
datasets exhibit this behaviour     --         
they are hard to overfit (using trees).

For situations where overfitting arises,    
ease of RF exploration enhanced by      
addition of a tuning parameter governing   
(individual) tree depth.



Replication Capacity: Random Forest PE∗
f

# Splits per Tree Minimun # Covariates per Split (m)

Node Size 10 20 100 282

Unlimited 5 589.7 590.4 608.2 602.9

25 589.2 586.7 587.5 593.8

50 594.0 583.7 582.1 584.2

5 5 602.9 592.9 575.6 578.6

25 598.5 587.4 576.2 577.1

50 592.4 588.4 581.2 581.6

Tree structured PE∗
t = 575.5
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Logic Regression

• Ruczinski, Kooperberg, LeBlanc. JCGS, 2003.

• Intended for settings where most predictors are

binary.

• Searches for Boolean combinations of predictors

in the entire space of such combinations.

• Is completely embedded in a regression frame-

work, with corresponding determination of model

quality: RSS, log-likelihood, . . .

• Distinguished by non-greedy search, generality.



Logic Regression Model Formulation

X1 Xk are 0/1 (False/True) predictors.

Y is a response variable – here RC.

Fit the model

g E Y β0

J

∑
j 1

β j L j

where L j is a Boolean combination of the covari-

ates, e.g. L j X1 X2 X c
4 .

Fix J and determine logic terms L j and estimate

β j simultaneously.



Logic Trees

• Boolean expressions can be represented as trees:

(X1 ∧Xc
2) ∨ (X3 ∧ (Xc

1 ∨X4))

corresponds to



Simulated Annealing:
The Move Set



Select a scoring fn:   RSS, log-likelihood,...

 Pick the maximum number of Logic Trees.
 Pick the maximum number of leaves in a tree.
 Initialize.
 

 Carry out the Simulated Annealing Algorithm:
 -- Propose a move.
 -- Accept or reject the move, depending on scores and temperature.

Lj = 0 ∀j

(J)

Logic Regression Fitting



CV, randomization tests employed
Requires measure of model size
Presently taken as number of leaves
Potentially problematic: 

more complex models : fewer leaves
Boolean expressions non-unique

Model Selection & Size



Efron (86),  Tibshirani and Knight (99), 
Ye (98), Efron et al (04)

 

Adaptive DF

µ̂ = g(y); cov(y) = σ2I

df =
n∑

i=1

cov(µ̂i, yi)/σ2



Logic Regression: RC
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Logic regression model with minimal 
cross-validation prediction error 
features one logic tree with three leaves.

Variables used are RT184, RT215, RT178.

Prediction error variance = 592.
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TSM effective for evaluating  genotype- 
phenotype association.
RF may not realize prediction gains due 
to strong between site dependence.
Adaptive degrees of freedom are a useful 
complement to logic regression.
Structurally significant RT sites found.

Conclusions
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