Gene mapping in mice

Karl W Broman Department of Biostatistics Johns Hopkins University

http://www.biostat.jhsph.edu/~kbroman

Goal

• Identify genes that contribute to common human diseases.

Advantages of the mouse

- Small and cheap
- Inbred lines
- Large, controlled crosses
- Experimental interventions
- Knock-outs and knock-ins

The mouse as a model

• Same genes?

 The genes involved in a phenotype in the mouse may also be involved in similar phenotypes in the human.

• Similar complexity?

 The complexity of the etiology underlying a mouse phenotype provides some indication of the complexity of similar human phenotypes.

Transfer of statistical methods.

 The statistical methods developed for gene mapping in the mouse serve as a basis for similar methods applicable in direct human studies.

The intercross

The data

- Phenotypes, y_i
- Genotypes, x_{ij} = AA/AB/BB, at genetic markers
- A genetic map, giving the locations of the markers.

Phenotypes

Trait 4

C57BL/6

Agouti coat

Genetic map

Genotype data

Goals

- Identify genomic regions (QTLs) that contribute to variation in the trait.
- Obtain interval estimates of the QTL locations.
- Estimate the effects of the QTLs.

Models: recombination

• No crossover interference

- Locations of breakpoints according to a Poisson process.
- Genotypes along chromosome follow a Markov chain.
- Clearly wrong, but super convenient.

Models: gen ↔ phe

Phenotype = y, whole-genome genotype = g

Imagine that *p* sites are all that matter.

 $E(y \mid g) = \mu(g_1, \dots, g_p) \qquad SD(y \mid g) = \sigma(g_1, \dots, g_p)$

Simplifying assumptions:

- $SD(y | g) = \sigma$, independent of g
- $y \mid g \sim \text{normal}(\mu(g_1, \dots, g_p), \sigma)$
- $\mu(g_1,...,g_p) = \mu + \sum \alpha_j \, 1\{g_j = AB\} + \beta_j \, 1\{g_j = BB\}$

Interval mapping

Lander and Botstein 1989

- Imagine that there is a single QTL, at position *z*.
- Let q_i = genotype of mouse *i* at the QTL, and assume $y_i | q_i \sim \text{normal}(\mu(q_i), \sigma)$
- We won't know q_i , but we can calculate $p_{ig} = \Pr(q_i = g \mid \text{marker data})$
- y_i , given the marker data, follows a mixture of normal distributions with known mixing proportions (the p_{iq}).
- Use an EM algorithm to get MLEs of $\theta = (\mu_{AA}, \mu_{AB}, \mu_{BB}, \sigma)$.
- Measure the evidence for a QTL via the LOD score, which is the log₁₀ likelihood ratio comparing the hypothesis of a single QTL at position z to the hypothesis of no QTL anywhere.

LOD curves

LOD thresholds

- To account for the genome-wide search, compare the observed LOD scores to the distribution of the maximum LOD score, genome-wide, that would be obtained if there were no QTL anywhere.
- The 95th percentile of this distribution is used as a significance threshold.
- Such a threshold may be estimated via permutations (Churchill and Doerge 1994).

Permutation distribution

maximum LOD score

Chr 9 and 11

Epistasis

Going after multiple QTLs

- Greater ability to detect QTLs.
- Separate linked QTLs.
- Learn about interactions between QTLs (epistasis).

Model selection

- Choose a class of models.
 - Additive; pairwise interactions; regression trees
- Fit a model (allow for missing genotype data).
 - Linear regression; ML via EM; Bayes via MCMC
- Search model space.
 - Forward/backward/stepwise selection; MCMC;
- Compare models.
 - $\operatorname{BIC}_{\delta}(\gamma) = \log \operatorname{L}(\gamma) + (\delta/2) |\gamma| \log n$

Miss important loci ↔ include extraneous loci.

Special features

- Relationship among the covariates.
- Missing covariate information.
- Identify the key players vs. minimize prediction error.

Opportunities for improvements

Each individual is unique.

- Must genotype each mouse.
- Unable to obtain multiple invasive phenotypes (e.g., in multiple environmental conditions) on the same genotype.
- Relatively low mapping precision.
- \rightarrow Design a set of inbred mouse strains.
 - Genotype once.
 - Study multiple phenotypes on the same genotype.

Recombinant inbred lines

AXB/BXA panel

Line

AXB/BXA panel

Line

LOD curves

Chr 7 and 19

Location (cM)

Recombination fractions

RI lines

Advantages

- Each strain is a eternal resource.
 - Only need to genotype once.
 - Reduce individual variation by phenotyping multiple individuals from each strain.
 - Study multiple phenotypes on the same genotype.
- Greater mapping precision.

Disadvantages

- Time and expense.
- Available panels are generally too small (10-30 lines).
- Can learn only about 2 particular alleles.
- All individuals homozygous.

Heterogeneous stock

McClearn et al. (1970) Mott et al. (2000); Mott and Flint (2002)

- Start with 8 inbred strains.
- Randomly breed 40 pairs.
- Repeat the random breeding of 40 pairs for each of ~60 generations (30 years).
- The genealogy (and protocol) is not completely known.

Heterogeneous stock

The "Collaborative Cross"

The "Collaborative Cross"

Advantages

- Great mapping precision.
- Eternal resource.
 - Genotype only once.
 - Study multiple invasive phenotypes on the same genotype.

Barriers

- Advantages not widely appreciated.
 - Ask one question at a time, or Ask many questions at once?
- Time.
- Expense.
- Requires large-scale collaboration.

To be worked out

- Breakpoint process along an 8-way RI chromosome.
- Reconstruction of genotypes given multipoint marker data.
- Single-QTL analyses.
 - Mixed models, with random effects for strains and genotypes/alleles.
- Power and precision (relative to an intercross).

Acknowledgments

- Terry Speed, Univ. of California, Berkeley and WEHI
- Tom Brodnicki, WEHI
- Gary Churchill, The Jackson Laboratory
- Joe Nadeau, Case Western Reserve Univ.