Perelman’s argument

Phase I. Structure of finite time sin-
gularities. Run the Ricci flow to the first
blow-up time. Show that the singularities
have a standard form, i.e. neck pinches,
capped necks, etc.

Phase II: Flow with surgery. Stop the
Ricci flow near/at the first singular time,
perform a surgery on the manifold by hand,
and then restart the flow. Repeat. Show
that flow-with-surgery can be defined /extended
for all time.

Phase III: Long-time behavior of flow
with surgery. As t — oo, one sees a col-
lection of hyperbolic manifolds glued along
incompressible tori to graph manifolds.

This outline is similar to the one Hamil-
ton proposed long ago. The main differ-
ences (between the outlines) are that Perel-
man does not show that only finitely many
surgeries occur, and in Phase III his esti-
mates lead to spaces satisfying only a lower
curvature bound, rather than the two-sided
bound envisioned by Hamilton.



Notation and Terminology

R scalar curvature.

Rm curvature tensor.

| Rm | norm of the curvature tensor.
(M, qg(-)) Ricci flow defined on some

time interval (a,b).

(M,qg(-),x,t) Pointed Ricci flow, = €
M, t € (a,b).

h(t) == ag(t +b) Parabolic rescaling
of the flow by the scale factor a > O.

(M, g(t)) Time t slice.



B(x,t,r) r-ball centered at z € M in
the time t slice (M, g(t)).

P(z,t,r) = B(z,t,r)x(t—r2, 1] Parabolic
ball centered at (x,t) of radius r.

(B(z,t,7),r2g9(%)) Normalized ball.

Normalized curvature, normalized volume,
normalized injectivity radius, etc of a ball
refer to the corresponding quantities for the
normalized ball. One has similar definitions
for the normalized curvature of a parabolic
ball.

All 3-manifolds will be orientable, for sim-
plicity.



Let (M7g()7w7t) and (M/7g,(.)7w,7t/) be
pointed Ricci flows. Pick € > 0.

Definition. The two pointed Ricci flows
are e-close in the Cl—topology if there are
open sets B(x,t, %) cU C M and B(x’,t’,%) C
U' c M', and a diffeomorphism ¢ : U — U’
such that for all —eiz < 1< 0 we have
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for all 0 < 5 < [. In other words, modulo
a diffeomorphism and a time shift, the jt?
time derivatives of g and ¢’ are C! e-close
in the on the parabolic ball P(x,t, %), for
0<j<l.
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This definition allows one to make sense
of convergence of a sequence of pointed
flows (Mg, gi.(+), x1, tr) to a pointed flow (Moo, goo(-

Note that these notions ignore what hap-
pens to the flow after the marked time.



Definition. A Ricci flow (M, g(-) has nor-
Mmalized initial conditions if it is defined
on an interval [0,T), the curvature |[Rm| is
bounded by 1 at ¢t = 0, and the volume of
every unit ball at time zero is at least half
the volume of a Euclidean unit ball. Any
Ricci flow on a compact manifold can be
normalized by parabolic rescaling.

Henceforth all Ricci flows will be 3-dimensional.



One of the main assertions in Phase I is
that, roughly speaking, one of the following
alternatives applies at each point (z,t):

a. The geometry of a parabolic ball cen-
tered at (x,t) of roughly unit scale is con-
trolled.

b. Modulo rescaling by R(z,t), the pointed
flow (M, g(-),z,t) is close to a model flow
(a “k-solution”).



Main assertion. (cf. 1.12.1) Pick € >
O and T' < oo. Then there are constants
Ro = Ro(e,T), and k = k(e,T), such that
if (M,qg(-)) is a Ricci flow with normalized
initial conditions, and R(z,t) > Rg, then
the pointed flow (M,gq(-),z,t), after being
parabolically rescaled by R(z,t), is e-close
to a pointed k-solution.

Remark: Due to a theorem of Hamilton-
Ivey, for Ricci flows with normalized initial
conditions, a point in space-time has large
scalar curvature if and only if the curvature
tensor has large norm.



rk-solutions (section 1.11)

A Ricci flow (N, h(-)) is a k-solution if:

e It is ancient: it is defined on an interval
of the form (—oo,t] for some ¢t € R.

e It has nonnegative curvature: Rm > 0

e The curvature |Rm| (or equivalently
the scalar curvature R) is bounded on each
time slice.

e (N,h(-)) has everywhere positive scalar
curvature.

e (N,h(:)) is k-noncollapsed: if the nor-
malized || of a parabolic ball P(z,t,r) is
< 1, then the normalized volume of the
ball B(x,t,r) is at least .

(An effectively equivalent definition of be-
ing k-noncollapsed is: if the normalized cur-
vature of a parabolic ball P(x,t,r) is < 1,
then the normalized injectivity radius of B(x,t,r)
is at least k.)



The proof of the Main assertion is a del-
icate blow-up argument. The task is to
show that if one has a sequence (My, gi(-), z, tr)
of pointed Ricci flows with normalized ini-
tial conditions, and R(x,tr) — oo, then af-
ter rescaling by R(x,t:), the sequence will
accumulate on a k-solution. Some of the
key ingredients are:

e (Cheeger-Gromov-Hamilton) A compact-
ness theorem for Ricci flows.

e (Perelman) A noncollapsing estimate,
which rules out Cheeger-Gromov type col-
lapsing in Ricci flows.

e (Hamilton-Ivey) A curvature pinching
estimate that implies that when the scalar
curvature is large, then the negative part of
the sectional curvature is small (in absolute
value) compared to the positive part.



e (Hamilton) A maximum principle for the
curvature operator, and a Harnack estimate
for the scalar curvature for flows with Rm >
0.

e (Toponogov, Alexandrov, Cheeger-Gromoll,
Gromov) The geometry of nonnegatively
curved Riemannian manifolds.
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Neck structure in x-solutions

Definition. Say that a point (z,t) is the
center of an e-neck if after parabolic rescal-
ing by R(x,t), the flow is e-close to round
cylindrical flow on S2 x R.

For all e > 0, thereis a D = D(k,¢e) < oo
such that

o If (M,qg(-)) is a noncompact s-solution
defined at time t € R, then there is a point
x € M such that all pc1>ints lying outside
the ball B(x,t, DR(x,t)” 2) are centers of e-
necks at time t. Furthermore, unless (M, g(-))
is round cylindrical flow on S2 x R, then
x can be choseln so that the metric ball
B(xz,t, DR(x,t)"2) is a 3-ball or a twisted
line bundle over RP2.
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o If (M,qg(-)) is a compact k-solution de-
fined at time ¢, then there is a pair of
points zq1,2zo € M such that points in M
lying outside the 1union of the two ballls
B(x1,t, DR(x1,t)"2) U B(xo,t, DR(x>,t)” 2)
are centers of e-necks at time t. Note that
M is diffeomorphic to a spherical space form
by Hamilton's theorem on 3-manifolds with
positive Ricci curvature.
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Further properties of k-solutions

e [ he collection of pointed k-solutions
(M,g(-),z,t) with R(z,t) = 1 is compact.
In particular, for any r, any space-time deriva-
tive of curvature will be uniformly bounded
on the parabolic ball P(x,¢,r) on any such
k-solution.

e There is constant n = n(k) such that
3
0 < 4R <nR? and |VR| < nR2.

e (Volume controls curvature) The nor-
malized curvature of any ball B(x,t,r) is
bounded above by a decreasing function of
its normalized volume.

e (Curvature controls volume) The nor-
malized volume of any ball B(x,t,r) is bounded
below by a positive decreasing function of
the normalized scalar curvature at the cen-
ter point (z,t).
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Assembling the local
information

Using the fact that the large curvature
part of the manifold is close to a k-solution
locally at the scale determined by the cur-
vature, one concludes that the large curva-
ture part consists of

e “Thin” components: S2 x Sl's §3's,
RP3's, and RP3#RP3's.

e “Thin"” components with boundary: S2x
I's, RP3\ B3's, and B3's.

e Components whose diameter is com-
parable to the radius of curvature. Af-
ter rescaling to unit diameter, these com-
ponents have controlled geometry, and by
Hamilton's theorem are diffeomorphic to
space forms.
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Flow with surgery

Due to the main assertion, one has strong
control on what is happening to the flow
as one approaches a finite blow-up time
T. This enables one to perform the first
surgery.

Main problem: after surgery one no longer
has a normalized initial condition.
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Extinction results

e Perelman, Colding-Minicozzi. If Mg has
no aspherical summands in its prime de-
composition, then M; = () for large ¢t.
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T he large-time picture
We look at the time ¢ slice at scales < +/t.

The “Thick” part M. A point
x € M belongs to the thick part at time
t if there is a scale r ~ v/t such that the
parabolic ball P(x,t,r) has controlled nor-
malized geometry.

The “thin” part M. x € M belongs
to M~ if there is a scale r < v/t such that
B(xz,t,r) has normalized Rm at least —1,
and small normalized volume.
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The thick-thin decomposition,
with quantifiers

For all w > 0O there are A = A(w) > 0O,
K = K(w) < oo such that for all x € M;,
one of the following holds:

e There exists an r < +/t such that the
normalized ball (B(z,t,r),r 2g(t)) has Rm >
—1 and volume at most w.

e The parabolic ball P(x,t, \\/t) has nor-
malized |Rm| at most K, and the normal-
ized volume of each of its time slices is at
least half the volume of the Euclidean unit
ball.

In the second case, one congludes that
the volume of (M, g(t)) is > ct2.
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T he Hamiltonian endgame

dR 012 2.5
— = AR = 2|Ric —R 1
— RicP2+2R* (1)
where Ric? is the traceless Ricci tensor.
2
Bmin 2 S Rinin (2)
3 1
RminZ_E (t+}1) (3)
using the fact that Rqjn > —6 at ¢t = 0.
d
V= —/RdV < ReinV. (4)
(3) and (4) imply that
V(t)
= (5)
2
(t+2)

is nonincreasing; we let V be its limit as
t — o0.

19



Case A.If V = 0, then for large t, M1 (w,t)
must be empty, since any point in M1 (w,t)
contribu?‘)ces a ball with volume compara-
ble to t2. Therefore M = M~ (w,t). By
the theory of collapsing with a lower cur-
vature bound (Shioya-Yamaguchi), this im-
plies that M is a graph manifold. (I'm ig-
noring a special case here.)

— —~ 2
Case B. V> 0. Let R:= RqninV3.

aR _ 2.
— >R / (Rpin — R)AV >0 (6)

since R < 0. Let R be the limit of R2 as
t —> oco. It is not hard to check that RV ™3 =
5, which implies that R # 0, and Rpyin is

3

asym ptotic to —57-
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