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0. introduction

In this lecture we will explain why the Ricci flow becomes extinct in finite time on 3–manifolds without
aspherical summands. This was shown by Perelman in [Pe3] and by Colding–Minicozzi in [CM2]. Our
treatment here follows [CM2]; see also [Pe3] for applications to the elliptic part of geometrization.

On a homotopy 3–sphere there is a natural way of constructing minimal surfaces and that comes from
the min–max argument where the minimal of all maximal slices of sweep–outs is a minimal surface; cf.
[CD]. In [CM2] we looked at how the area of this min–max surface changes under the flow. Geometrically
the area measures a kind of width of the 3–manifold (see the figure below) and as we will see for 3–
manifolds without aspherical summands (like a homotopy 3–sphere) the area becomes zero in finite time
corresponding to that the solution becomes extinct in finite time1.

W

min–max surface

Figure 1. The sweep–out, the min–max surface, and the width W.

Let M3 be a smooth closed orientable 3–manifold and let g(t) be a one–parameter family of metrics
on M evolving by Hamilton’s Ricci flow (see [Ha]), so

∂tg = −2RicMt . (0.1)

Unless otherwise stated we will assume throughout that M is prime and non–aspherical (so πk(M) �=
{0} for some k > 1). If M is prime but not irreducible, then M = S2 × S1 (proposition 1.4 in [Hr]) so
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1It may be of interest to compare our notion of width, and the use of it, to a well–known approach to the Poincaré

conjecture. This approach asks to show that for any metric on a homotopy 3–sphere a min–max type argument produces
an embedded minimal 2–sphere. Note that in the definition of the width it play no role whether the minimal 2–sphere is
embedded or just immersed, and thus, the analysis involved in this was settled a long time ago. This well–known approach
has been considered by many people, including Freedman, Meeks, Pitts, Rubinstein, Schoen, Simon, Smith, and Yau; see
[CD].
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π3(M) = Z. Otherwise, if M is irreducible, then the sphere theorem implies that π2(M) = 0 (corollary
3.9 in [Hr]). In the second case, the Hurewicz isomorphism theorem then implies that π3(M) �= {0}
(since M is non–aspherical). Therefore, in either case, by suspension, the space of maps from S2 to M
is not simply connected.

Fix a continuous map β : [0, 1] → C0 ∩ L2
1(S

2,M) where β(0) and β(1) are constant maps so that β
is in the nontrivial homotopy class [β]. We define the width W = W (g, [β]) by

W (g) = min
γ∈[β]

max
s∈[0,1]

E(γ(s)) . (0.2)

One could equivalently define the width using the area rather than the energy, but the energy is some-
what easier to work with. As for the Plateau problem, this equivalence follows using the uniformization
theorem and the inequality Area(u) ≤ E(u) (with equality when u is a branched conformal map); cf.
lemma 4.12 in [CM1].

The next theorem gives an upper bound for the derivative of the width W (g(t)) under the Ricci flow
which forces the solution g(t) to become extinct in finite time (see paragraph 4.4 of [Pe2] for the precise
definition of extinction time when surgery occurs).

Theorem 0.3. ([CM2]). Let M3 be a closed orientable prime non–aspherical 3–manifold equipped with
a Riemannian metric g = g(0). Under the Ricci flow, the width W (g(t)) satisfies

d

dt
W (g(t)) ≤ −4π +

3
4(t + C)

W (g(t)) , (0.4)

in the sense of the limsup of forward difference quotients. Hence, g(t) must become extinct in finite
time.

The 4π in (0.4) comes from the Gauss–Bonnet theorem and the 3/4 comes from the bound on the
minimum of the scalar curvature that the evolution equation implies. Both of these constants matters
whereas the constant C depend on the initial metric and the actual value is not important.

To see that (0.4) implies finite extinction time rewrite (0.4) as

d

dt

(
W (g(t)) (t + C)−3/4

)
≤ −4π (t + C)−3/4 (0.5)

and integrate to get

(T + C)−3/4 W (g(T )) ≤ C−3/4 W (g(0)) − 16π
[
(T + C)1/4 − C1/4

]
. (0.6)

Since W ≥ 0 by definition and the right hand side of (0.6) would become negative for T sufficiently large
we get the claim.

Arguing as in 1.5 of [Pe3] (or alternatively using Remark 2.14), we get as a corollary finite extinction
time for the Ricci flow on all 3–manifolds without aspherical summands.

Corollary 0.7. ([Pe3] and [CM2]). Let M3 be a closed orientable 3–manifold whose prime decompo-
sition has only non–aspherical factors and is equipped with a Riemannian metric g = g(0). Under the
Ricci flow with surgery, g(t) must become extinct in finite time.

1. Upper bound for the rate of change of area of minimal 2–spheres

Suppose that Σ ⊂ M is a closed immersed surface (not necessarily minimal), then using (0.1) an easy
calculation gives (cf. page 38–41 of [Ha])

d

dt t=0
Areag(t)(Σ) = −

∫
Σ
[R − RicM (n,n)] . (1.1)
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If Σ is also minimal, then

d

dt t=0
Areag(t)(Σ) = −2

∫
Σ

KΣ −
∫

Σ
[|A|2 + RicM (n,n)] = −

∫
Σ

KΣ − 1
2

∫
Σ
[|A|2 + R] . (1.2)

Here KΣ is the (intrinsic) curvature of Σ, n is a unit normal for Σ (our Σ’s below will be S2’s and hence
have a well–defined unit normal), A is the second fundamental form of Σ so that |A|2 is the sum of the
squares of the principal curvatures, RicM is the Ricci curvature of M , and R is the scalar curvature of
M . (The curvature is normalized so that on the unit S3 the Ricci curvature is 2 and the scalar curvature
is 6.) To get (1.2), we used that by the Gauss equations and minimality of Σ

KΣ = KM − 1
2
|A|2 , (1.3)

where KM is the sectional curvature of M on the two–plane tangent to Σ.
The next lemma gives an upper bound for the rate of change of area of minimal 2–spheres.

Lemma 1.4. If Σ ⊂ M3 is a branched minimal immersion of the 2–sphere, then

d

dt t=0
Areag(t)(Σ) ≤ −4π − Areag(0)(Σ)

2
min
M

R(0) . (1.5)

Proof. Let {pi} be the set of branch points of Σ and bi > 0 the order of branching at pi. By (1.2)

d

dt t=0
Areag(t)(Σ) ≤ −

∫
Σ

KΣ − 1
2

∫
Σ

R = −4π − 2π
∑

bi − 1
2

∫
Σ

R , (1.6)

where the equality used the Gauss–Bonnet theorem with branch points. �

2. Extinction in finite time

We begin by recalling a result on harmonic maps which gives the existence of minimal spheres realizing
the width W (g). The results of Sacks and Uhlenbeck give the harmonic maps but potentially allow some
loss of energy. This energy loss was ruled out by Siu and Yau (using also arguments of Meeks and Yau),
see Chapter VIII in [ScYa]. For our purposes, the most convenient statement of this is given in theorem
4.2.1 of [Jo].

Proposition 2.1. Given a metric g on M and a nontrivial [β] ∈ π1(C0 ∩ L2
1(S

2,M)), there exists a
sequence of sweep–outs γj : [0, 1] → C0 ∩ L2

1(S
2,M) with γj ∈ [β] so that

W (g) = lim
j→∞

max
s∈[0,1]

E(γj
s) . (2.2)

Furthermore, there exist sj ∈ [0, 1] and branched conformal minimal immersions u0, . . . , um : S2 → M

so that, as j → ∞, the maps γj
sj converge to u0 weakly in L2

1 and uniformly on compact subsets of
S2 \ {x1, . . . , xk}, and

W (g) =
m∑

i=0

E(ui) = lim
j→∞

E(γj
sj

) . (2.3)

Finally, for each i > 0, there exists a point xki
and a sequence of conformal dilations Di,j : S2 → S2

about xki
so that the maps γj

sj ◦ Di,j converge to ui.

Remark 2.4. It is implicit in Proposition 2.1 that W (g) > 0. This can, for instance, be seen directly
using [Jo]. Namely, page 125 in [Jo] shows that if maxs E(γj

s) is sufficiently small (depending on g), then
γj is homotopically trivial.
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We will also need a standard additional property for the min–max sequence of sweep–outs γj of
Proposition 2.1 which can be achieved by modifying the sequence as in section 4 of [CD] (cf. proposition
4.1 on page 85 in [CD]). Loosely speaking this is the property that any subsequence γk

sk
with energy

converging to W (g) converges (after possibly going to a further subsequence) to the union of branched
immersed minimal 2–spheres. Precisely this is that we can choose γj so that: Given ε > 0, there exist
J and δ > 0 (both depending on g and γj) so that if j > J and

E(γj
s) > W (g) − δ , (2.5)

then there is a collection of branched minimal 2–spheres {Σi} with

dist (γj
s ,∪iΣi) < ε . (2.6)

Here, the distance means varifold distance (see, for instance, section 4 of [CD]). Below we will use that,
as an immediate consequence of (2.6), if F is a quadratic form on M and Γ denotes γj

s , then∣∣∣∣∣
∫

Γ
[Tr(F ) − F (nΓ,nΓ)] −

∑
i

∫
Σi

[Tr(F ) − F (nΣi ,nΣi)]

∣∣∣∣∣ < C ε ‖F‖C1 Area(Γ) . (2.7)

In the proof of the result about finite extinction time we will also need that the evolution equation
for R = R(t), i.e. (see, for instance, page 16 of [Ha]),

∂tR = ∆R + 2|Ric|2 ≥ ∆R +
2
3

R2 , (2.8)

implies by a straightforward maximum principle argument that at time t > 0

R(t) ≥ 1
1/[min R(0)] − 2t/3

= − 3
2(t + C)

. (2.9)

In the derivation of (2.9) we implicitly assumed that minR(0) < 0. If this was not the case, then (2.9)
trivially holds with C = 0, since, by (2.8), min R(t) is always non–decreasing. This last remark is also
used when surgery occurs. This is because by construction any surgery region has large (positive) scalar
curvature.

Proof. (of Theorem 0.3) By the remark following the statement of the theorem it is enough to show
(0.4). Fix a time τ . Below C̃ denotes a constant depending only on τ but will be allowed to change from
line to line. Let γj(τ) be the sequence of sweep–outs for the metric g(τ) given by Proposition 2.1. We
will use the sweep–out at time τ as a comparison to get an upper bound for the width at times t > τ .
The key for this is the following claim (the first inequality in (2.10) below): Given ε > 0, there exist J
and h̄ > 0 so that if j > J and 0 < h < h̄, then

Areag(τ+h)(γ
j
s(τ)) − max

s
Eg(τ)(γ

j
s(τ))

≤ [−4π + C̃ ε +
3

4(τ + C)
max

s
Eg(τ)(γ

j
s(τ))]h + C̃ h2 . (2.10)

To see why (2.10) implies (0.4), we use the definition of the width to get

W (g(τ + h)) ≤ max
s∈[0,1]

Areag(τ+h)(γ
j
s(τ)) , (2.11)

and then take the limit as j → ∞ (so that maxs Eg(τ)(γ
j
s(τ)) → W (g(τ))) in (2.10) to get

W (g(τ + h)) − W (g(τ))
h

≤ −4π + C̃ ε +
3

4(τ + C)
W (g(τ)) + C̃ h . (2.12)
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Taking ε → 0 in (2.12) gives (0.4). It remains to prove (2.10). First, let δ > 0 and J , depending on ε

(and on τ), be given by (2.5)–(2.7). If j > J and Eg(τ)(γ
j
s(τ)) > W (g) − δ, then let ∪iΣ

j
s,i(τ) be the

collection of minimal spheres in (2.7). Combining (1.1), (2.7) with F = RicM , and Lemma 1.4 gives

d

dt t=τ
Areag(t)(γ

j
s(τ)) ≤ d

dt t=τ
Areag(t)(∪iΣ

j
s,i(τ)) + C̃ ε ‖RicM‖C1 Areag(t)(γ

j
s(τ))

≤ −4π − Eg(τ)(γ
j
s(τ))

2
min
M

R(τ) + C̃ ε (2.13)

≤ −4π +
3

4(τ + C)
max

s
Eg(τ)(γ

j
s(τ)) + C̃ ε ,

where the last inequality used the lower bound (2.9) for R(τ). Since the metrics g(t) vary smoothly
and every sweep–out γj has uniformly bounded energy, it is easy to see that Eg(τ+h)(γ

j
s(τ)) is a smooth

function of h with a uniform C2 bound independent of both j and s near h = 0 (cf. (1.1)). In
particular, (2.13) and Taylor expansion gives h̄ > 0 (independent of j) so that (2.10) holds for s with
Eg(τ)(γ

j
s(τ)) > W (g) − δ. In the remaining case, we have E(γj

s(τ)) ≤ W (g) − δ so the continuity of g(t)
implies that (2.10) automatically holds after possibly shrinking h̄ > 0. �

Remark 2.14. When M is reducible, then the factors in the prime decomposition must split off in a
uniformly bounded time. This follows from a (easy) modification of the proof of Theorem 0.3. Namely,
each (non–trivial) factor in the prime decomposition gives rise to a 2–sphere which does not bound a
3–ball in M and, hence, to a stable minimal 2–sphere in this isotopy class by [MeSiYa]. Applying the
argument of the proof of Theorem 0.3 to these minimal 2–spheres, we see that the minimal area in this
isotopy class must go to zero in finite time as claimed.

3. Perelman’s proof of the finite time extinction

Suppose for simplicity that M3 is a homotopy 3–sphere. In [Pe3] Perelman looks at the space Λ(M)
of closed curves in M , that is maps from S1 to M , and for each such curve c he looks at the infimum of
areas of all disks that span c and denote it by A(c). He then considers a non–trivial homotopy class in
π∗(Λ(M),M). For a given representative for such a homotopy he looks at the supremum of A(c) where
c lies in the representative. He then takes the infimum over all representatives of the given homotopy
class. This is the quantity that he considers in place of our width and he shows that it becomes zero in
finite time corresponding to that the solution become extinct in finite time.

In his case there are several complications that arise that do not occur when one looks at the width.
One of these is some regularity issues, another is that he is forced to, at the same time as he lets the
metric flow by the Ricci flow, let the curves evolve by curve shortening and it requires work to make
sense of this.
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